* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Magnetic Fields due to Currents
Maxwell's equations wikipedia , lookup
Neutron magnetic moment wikipedia , lookup
Electromagnetism wikipedia , lookup
Field (physics) wikipedia , lookup
Magnetic monopole wikipedia , lookup
Magnetic field wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Superconductivity wikipedia , lookup
[SHIVOK SP212] February 20, 2016 CH 29 MagneticFieldsduetoCurrents I. CalculatingtheMagneticFieldduetoaCurrent A. ThemagnitudeofthefielddBproducedatpointPatdistancerby acurrentlengthelementidsturnsouttobe whereistheanglebetweenthedirectionsof dS and r̂ ,aunitvector thatpointsfromdstowardP.Symbol0isaconstant,calledthe permeabilityconstant,whosevalueis B. Therefore,invectorform C. Diagram Page1 [SHIVOK SP212] February 20, 2016 II. MagneticFieldduetoaLongStraightWire: A. ThemagnitudeofthemagneticfieldataperpendiculardistanceR fromalong(infinite)straightwirecarryingacurrentiisgivenby B. Direction:RHRforWires 1. Visualizationwithironfillings: a) Fig.29‐3Ironfilingsthathavebeensprinkledontocardboard collectinconcentriccircleswhencurrentissentthroughthecentral wire.Thealignment,whichisalongmagneticfieldlines,iscausedbythe magneticfieldproducedbythecurrent.(CourtesyEducation DevelopmentCenter) Page2 [SHIVOK SP212] February 20, 2016 2. RHR:Grasptheelementinyourrighthandwithyourthumbextended pointinginthedirectionofthecurrentflow.Yourfingerswillthennaturally curlaroundtheelementinthedirectionofthemagneticfieldlines. 3. Example: a) Fig.29‐4Aright‐handrulegivesthedirectionofthemagneticfielddue toacurrentinawire.(a)ThemagneticfieldBatanypointtotheleftofthewire isperpendiculartothedashedradiallineanddirectedintothepage,inthe directionofthefingertips,asindicatedbythex.(b)Ifthecurrentisreversed,at anypointtotheleftisstillperpendiculartothedashedradiallinebutnowis directedoutofthepage,asindicatedbythedot. C. ProofforEquationforSolvingforBmagnitude: Equation if semi‐infinite straight wire: Note that the Magnetic field due to either the lower half or the upper half of the infinite wire in figure 29‐5, is half that value; this is: Page3 [SHIVOK SP212] February 20, 2016 III. MagneticFieldduetoaCurrentinaCircularArcofWire: A. StartingwithBiot‐Savartandthebelowdrawing: B Note: Page4 [SHIVOK SP212] February 20, 2016 B. SampleProblem: 1. InFig.below,twocirculararcshaveradiia=13.5cmandb=10.7cm, subtendangleθ=74.0°,carrycurrenti=0.411A,andsharethesamecenterof curvatureP.Whatarethe(a)magnitudeand(b)direction(intooroutofthe page)ofthenetmagneticfieldatP? a) Solution: Page5 [SHIVOK SP212] February 20, 2016 IV. ForcebetweenTwoParallelWires: A. Tofindtheforceonacurrent‐carryingwireduetoasecond current‐carryingwire,firstfindthefieldduetothesecondwireatthe siteofthefirstwire.Thenfindtheforceonthefirstwireduetothat field. B. Parallelcurrentsattracteachother,andantiparallelcurrents repeleachother. C. Diagram D. Page6 [SHIVOK SP212] February 20, 2016 E. SampleProblem: 1. Twoinfinitelylong,parallel,current‐carryingwireswithcurrents directedoutofthepageareshown.Thewiresareperpendiculartotheplane ofthepageandareseparatedbyadistanceof0.80m. a) Whatisthemagneticfieldvectoratapointmidwaybetweenthe wires? b) Whatistheforceona2.5mlengthofwire1duetowire2? Page7 [SHIVOK SP212] February 20, 2016 V. ForcebetweenTwoParallelWires,RailGun: Page8 [SHIVOK SP212] February 20, 2016 VI. Ampere’sLaw: A. Remember,whenwewantedtofindqencgivenanE‐field,orvice versa,wechoseaGaussianSurface,andtooktheclosedloopintegral ofEdotdA. B. Now,wewanttoknowiencgivenaB‐field,orviceversa.Sothis timewechooseanAmperianLoop,andwetaketheclosedloop integralofBdotdS. C. TheLaw: 1. 2. RHR:CurlyourrighthandaroundtheAmperianloop,withthefingers pointinginthedirectionofintegration. a) Acurrentthroughtheloopinthegeneraldirectionofyour outstretchedthumbisassignedaplussign, b) andacurrentgenerallyintheoppositedirectionisassigneda minussign. Page9 [SHIVOK SP212] February 20, 2016 D. Ampere’sLawusedtosolveMagneticFieldOutsideaLongStraight WireCarryingCurrent: 1. 2. 3. Page 10 [SHIVOK SP212] February 20, 2016 E. Ampere’sLaw,MagneticFieldInsideaLongStraightWire CarryingCurrent: 1. Diagram 2. 3. Page 11 [SHIVOK SP212] February 20, 2016 VII. SolenoidsandToroids: A. ASolenoidisbasicallyacoilwoundintoatightlypackedhelix.In physics,thetermsolenoidreferstoalong,thinloopofwire,often wrappedaroundametalliccore,whichproducesamagneticfield whenanelectriccurrentispassedthroughit.Solenoidsareimportant becausetheycancreatecontrolledmagneticfieldsandcanbeusedas electromagnets. B. Below,averticalcrosssectionthroughthecentralaxisofa “stretched‐out”solenoid.Thebackportionsoffiveturnsareshown,as arethemagneticfieldlinesduetoacurrentthroughthesolenoid. Eachturnproducescircularmagneticfieldlinesnearitself.Nearthe solenoid’saxis,thefieldlinescombineintoanetmagneticfieldthatis directedalongtheaxis.Thecloselyspacedfieldlinesthereindicatea strongmagneticfield.Outsidethesolenoidthefieldlinesarewidely spaced;thefieldthereisveryweak. Page 12 [SHIVOK SP212] February 20, 2016 C. ApplicationofAmpere’slawtoasectionofalongidealsolenoid carryingacurrenti.TheAmperianloopistherectangleabcda. 1. 2. 3. thesolenoid Herenbethenumberofturnsperunitlengthof 4. 5. Page 13 [SHIVOK SP212] February 20, 2016 D. MagneticFieldofaToroid: 1. Atoroidisadoughnut‐shapedobject. 2. SothemagneticfieldofaToroidshapedsolenoidis: 3. whereiisthecurrentinthetoroidwindings (andispositiveforthosewindingsenclosedbytheAmperianloop)andNis thetotalnumberofturns.Thisgives 4. Page 14 [SHIVOK SP212] February 20, 2016 VIII. ACurrentCarryingCoilasaMagneticDipole: A. B. C. D. E. F. Page 15 [SHIVOK SP212] February 20, 2016 Page 16