Download Waves - ismaastricht

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Gravitational lens wikipedia , lookup

Photoelectric effect wikipedia , lookup

Transcript
Waves
1. The diagram shows a wave.
What is the amplitude of the wave?
A
1cm
B
2cm
C
5cm
D
10cm
0654/11/M/J/13 Q34
2. A ray of light strikes a plane mirror.
What is the angle of reflection of the ray?
A
150°
B
90°
C
60°
D
30°
0654/11/M/J/13 Q35
3. An electronic engineer wishes to make a remote controller to operate a television.
Which type of electromagnetic radiation must the remote controller emit?
A infra-red waves
B microwaves
C radio waves
D ultraviolet waves
0654/11/M/J/13 Q36
4. Which change to a sound wave would make it louder?
A decreasing the amplitude
B increasing the amplitude
C decreasing the wavelength
D increasing the wavelength
0654/11/M/J/13 Q37
5. A student counts how many waves pass point P in 30 seconds.
Using only this information, what can the student calculate?
A the amplitude of the wave
B the frequency of the wave
C the speed of the wave
D the wavelength of the wave
0654/11/O/N/13 Q34
6. Which diagram shows the dispersion of white light as it passes through a glass prism?
0654/11/O/N/13 Q35
7. Which row shows how the speed and the wavelength of microwaves compare with those of
speed
wavelength
A
less than γ-rays
greater than γ-rays
B
less than γ-rays
less than γ-rays
C
the same as γ-rays
greater than γ-rays
D
the same as γ-rays
less than γ-rays
0654/11/O/N/13 Q36
8. What is the approximate value of the frequency of the highest-pitched sound that can be
heard by a young person?
A
20Hz
B
200Hz
C
2000Hz
D
20000Hz
0654/11/O/N/13 Q37
9. Which type of wave is longitudinal?
A light wave
B radio wave
C sound wave
D water wave
0654/13/O/N/13 Q34
10. A plane mirror forms an image of an object placed in front of it.
Which row describes the image?
image type
image size
A
real
same size as object
B
real
smaller than object
C
virtual
same size as object
D
virtual
smaller than object
0654/13/O/N/13 Q35
11. Red light and violet light have different frequencies and different wavelengths.
Which colour light has the higher frequency and which has the larger wavelength?
higher frequency
larger wavelength
A
red
red
B
red
violet
C
violet
red
D
violet
violet
0654/13/O/N/13 Q36
12. The diagram shows water waves travelling towards a barrier.
Which diagram shows the direction of the waves after being reflected by the barrier?
0654/11/M/J/12 Q33
13. A glass block is surrounded by a vacuum. A ray of light strikes the inside of the glass block,
and is totally reflected back into the block.
Why does this happen?
A Angle his greater than the critical angle.
B Angle i is greater than the critical angle.
C Light cannot travel through a vacuum.
D The ray is travelling along the normal.
0654/11/M/J/12 Q34
14. The Sun emits infra-red radiation, ultraviolet radiation and visible light.
Which statement about the time it takes these radiations to reach Earth’s atmosphere is correct?
A Infra-red radiation arrives first.
B Ultraviolet radiation arrives first.
C Visible light arrives first.
D They all arrive at the same time.
0654/11/M/J/12 Q35
15. Astronaut 1 uses a hammer to mend a satellite in space. Astronaut 2 is nearby. There is no
air in space.
Compared with the sound heard if they were working on Earth, what does astronaut 2 hear?
A a louder sound
B a quieter sound
C a sound of the same loudness
D no sound at all
0654/11/M/J/12 Q36
16. A converging lens in a camera is used to make an image on a film. The image is smaller than
the object.
At which point could the object be placed so that it makes this image?
0654/13/M/J/12 Q34
17. Diagram 1 represents a wave.
Which diagram represents a wave with double the frequency and half the amplitude of the wave in
diagram 1?
The scales are the same in all the diagrams.
0654/11/O/N/12 Q33
18. The diagram shows how a real image is formed by a converging lens.
Which distance is the focal length of the lens?
0654/11/O/N/12 Q34
19. Radio waves, infra-red radiation and visible light are different types of electromagnetic
waves.
What is true for these electromagnetic waves?
A Infra-red radiation travels more quickly than visible light.
B Radio waves travel more quickly than infra-red radiation.
C Radio waves travel at the same speed as visible light.
D Visible light travels more slowly than radio waves.
0654/11/O/N/12 Q35
20. An electric bell with its own battery is suspended by a rubber band inside a sealed glass jar.
The hammer hits the bell and makes it ring. A pump can remove air from the jar.
The pump is switched on and the air is removed from
the jar. The hammer still hits the bell but the sound
becomes quieter until it cannot be heard.
Why does this happen?
A An electric current cannot flow in a vacuum.
B A medium is required to transmit sound waves.
C The bell cannot be made to vibrate in a vacuum.
D The pitch of the note is now outside the range of human hearing.
0654/12/O/N/12 Q36
21. The diagram shows water waves seen from above.
One wave is made every 0.5s.
What is the frequency of the waves and what is their wavelength?
0654/13/O/N/12 Q33
22.
(a) A fishing boat is floating on the sea.
The fishing boat uses echo sounding to detect a shoal of
fish.
This is shown in Fig. 2.1.
Short pulses of sound are sent out from the boat. The echo
from the shoal of fish is detected by a receiver on the boat
0.2 seconds later.
Sound waves travel through water at a speed of 1600m/s.
(i) Calculate the distance of the shoal of fish below the
boat.
State the formula that you use and show your working.
formula
working
[2]
(ii) The sound waves have a wavelength of 0.25m.
Calculate the frequency of the waves.
State the formula that you use and show your working.
formula
working
[2]
0654/31/M/J/13 Q2 part
23.
(a) Electromagnetic waves are transverse waves.
Draw labelled diagrams to explain the difference between a transverse wave and a longitudinal
wave.
[3]
(b) Fig. 12.1 shows a person using a periscope to look over a wall.
(i) On Fig. 12.1 draw a ray diagram to explain how the person can see over the wall.
[3]
(ii) An image formed in a plane mirror is called a virtual image.
Explain the meaning of the term virtual image.
__________________________________________________________________________________
__________________________________________________________________________________
[1]
(c) Fig. 12.2 shows a lens being used to observe an object O.
The focal length of the lens is 3.0cm. The diagram is drawn full scale.
This question depends on the
printout being exact the right size.
Instead, use the arrow below for
scale. It is 2cm long
(i) On Fig. 12.2 draw two rays from the top of the object O that meet at the image.
Label the image X.
[3]
(ii) Measure the height of the object O and the height of the image X.
object height _____________ image height _________________
[1]
(iii) Calculate the magnification.
Show your working.
[2]
0654/31/M/J/13 Q12
24.
(a) Visible light and γ-(gamma) radiation are two regions of the electromagnetic spectrum.
(i) State the speed, in km/s, of all electromagnetic waves when travelling through a vacuum.
km/s
[1]
(ii) Name a region of the electromagnetic spectrum that is used in remote control devices for
televisions.
__________________________________________________________________________________
[1]
(iii) State one way in which the waves in different regions of the electromagnetic spectrum differ
from each other.
__________________________________________________________________________________
[1]
0654/33/M/J/13 Q5 part
25.
(c) The driver needs to see a vehicle following behind.
Fig. 5.4 shows a ray of light from the vehicle behind reflected into the driver’s eye from a rear-view
mirror.
(i) Complete the diagram to show the rear view mirror in its correct position.
[2]
(ii) On the diagram, show and mark the angle of incidence with its value.
[2]
(d) Sunlight can be focused onto smaller areas of a solar panel to improve efficiency.
Fig. 5.5 shows two parallel rays of sunlight being focused by a lens. The lens has a focal length of
5cm.
Complete the diagram to show the rays of sunlight being focused by the lens.
0654/31/O/N/13 Q5 part
26.
(a) Fig. 2.1 shows two means of communication between Singapore and Sydney.
Method 1 Microwave signals are sent by satellite.
Method 2 Infra-red waves carrying a signal are sent through an optical fibre cable.
Fig. 2.2 shows an infra-red ray entering an optical fibre.
The infra-red ray travels all the way through the optical fibre.
(i) Explain why the infra-red ray stays inside the optical fibre. You may draw on the diagram if it
helps your answer.
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
[3]
(ii) The length of an optical fibre cable between Singapore and Sydney is 6.3 x 106m.
The speed of infra-red waves in an optical fibre is 2.1 x 108m/s.
Calculate the time taken for the signal to travel from Singapore to Sydney.
State any formula that you use, show your working and state the unit of your answer.
formula
working
unit
[2]
(iii) The speed at which microwaves travel through space is greater than the speed at which infrared waves travel through an optical fibre.
Suggest why the time taken by infra-red signals is less than the time taken by the microwave signals
to travel from Singapore to Sydney.
__________________________________________________________________________________
__________________________________________________________________________________
[1]
(b) Fig. 2.3 shows a demonstration of sound transmission using a bell jar.
As the air is removed from the bell jar, the ringing sound from inside the bell jar gets quieter. When
all the air has been removed, the bell cannot be heard.
Explain these observations.
[2]
0654/32/O/N/13 Q2
27.
(a) A bat produces a sound wave with a frequency of 212kHz and a wavelength of 0.0016m.
(i) State the meaning of the terms frequency and wavelength, when describing a wave. You may use
a diagram if it helps your explanation.
Frequency
__________________________________________________________________________________
__________________________________________________________________________________
wavelength
__________________________________________________________________________________
__________________________________________________________________________________
[2]
(ii) Calculate the speed of the sound wave produced by the bat.
State the formula that you use and show your working.
formula used
working
[2]
(iii) Sound travels through the air by a series of compressions and rarefactions.
Describe what this means in terms of air particles.
__________________________________________________________________________________
__________________________________________________________________________________
__________________________________________________________________________________
[2]
(b) The two incomplete diagrams below show rays of light travelling through a rectangular glass
block.
(i) Fig. 4.1 shows a ray of light passing out of a glass block.
On Fig. 4.1, label the angle of incidence, i, and the angle of refraction, r.
[2]
(ii) Fig. 4.2 shows a ray of light that does not pass out of the glass block. This is called total internal
reflection.
On Fig. 4.2, label the angle of reflection.
[1]
(iii) Describe one way in which total internal reflection of light is used.
__________________________________________________________________________________
__________________________________________________________________________________
[2]
0654/31/M/J/12 Q4
28.
(a) Radio waves are electromagnetic waves. Sound waves are not.
State three other ways in which radio waves differ from sound waves.
1
2
3
[2]
(b) Visible light is another type of electromagnetic wave.
The frequency of green light is 5 x 1014Hz.
The wavelength of green light is 6 x 10-7m.
Calculate the speed of green light.
State the formula that you use and show your working.
formula used
working
[2]
(c) A thin beam of white light is shone onto two glass blocks.
On Fig. 10.1, complete the diagrams to show what happens to the light passing through each block
and after it emerges from the block.
[4]
(d) A student carried out an experiment to find the speed of sound in air by watching and listening
to a bell being rung.
He stood 500m from the bell.
The sound took 1.5s to travel from the bell to the student.
Calculate the speed of sound.
State the formula used and show your working.
formula used
working
[2]
0654/32/M/J/12 Q10