* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Automated CVR
Ground loop (electricity) wikipedia , lookup
Ground (electricity) wikipedia , lookup
Spark-gap transmitter wikipedia , lookup
Stepper motor wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Power engineering wikipedia , lookup
Power inverter wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Electrical ballast wikipedia , lookup
Variable-frequency drive wikipedia , lookup
History of electric power transmission wikipedia , lookup
Three-phase electric power wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Current source wikipedia , lookup
Electrical substation wikipedia , lookup
Power electronics wikipedia , lookup
Schmitt trigger wikipedia , lookup
Power MOSFET wikipedia , lookup
Opto-isolator wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Buck converter wikipedia , lookup
Surge protector wikipedia , lookup
Alternating current wikipedia , lookup
Voltage regulator wikipedia , lookup
Stray voltage wikipedia , lookup
Simplified VO M&V Protocols Approved May 4th, 2010 1. Simplified VO M&V Protocol can be applied to distribution systems with Residential and Small Commercial Loads to verify energy savings from reduced voltage operation. 2. Protocol makes use of historical data, system modeling, 7day M&V ‘on’ and 7-day ‘off’ hourly measurements, and “Deemed” end-use VO Factors determined from NEEA DEI Study 2007 results. 3. Protocol can be used with three Voltage Regulation Techniques, VFR, LDC, and AVFC. 1 Three Voltage Regulation Techniques 1. Voltage Fixed Reduction (VFR) • Fixes the voltage level at the substation source and the voltage level at the end of the feeder varies with load Volts 126 • Old voltage setting Vset = 125V, R and X settings = 0 • New voltage setting Vset = 122V, R and X settings = 0 120 114 Feeder Length 2 Three Voltage Regulation Techniques 2. Line Drop Compensation (LDC) – Fixes the voltage level at the end of the feeder and the voltage level varies at the substation source with load Volts 126 • Old voltage setting Vset = 125V, R and X settings = 0 • New voltage setting Vset = 120V, R and X settings = 3 to 5 120 114 Feeder Length 3 Three Voltage Regulation Techniques 3. Automatic Voltage Feedback Control (AVFC) – Fixes the voltage level at the substation source based on real-time voltage feedback sign from the end of the feeder (s) 4 Three Voltage Regulation Techniques 3. Automatic Voltage Feedback Control (AVFC) – Fixes the voltage level at the substation source based on real-time voltage feedback sign from the end of the feeder Volts 126 • Old voltage setting Vset = 125V, R and X settings = 0 • New voltage setting Vset = 119V, R and X settings = 0 120 114 Feeder Length 5 Voltage Control Zones Primary Voltage Zone VCZ for LTC Transformer Feeder Secondary Voltage Zone Load Tap Changer (LTC) Feeder Breaker 6 Voltage Control Zones VCZ for LTC Transformer VCZ for V-Reg Feeder V-Reg Load Tap Changer (LTC) Feeder Breaker 7 Four Stages to Simplified VO M&V Protocol 1. Existing Performance Assessment and VO Implementation Plan 2. System Improvements Baseline Pre-VO measurements 3. VO Implementation Post-VO Measurements and Verification 4. Persistence Measurements Historical Load Data: kWh-annual, Volt_Drop-max, kWpeak-demand Distr _Line Modeling Load_Flow Analysis Threshold Analysis Determine end-use VO Factor Estimate Potential Savings Install VO and SI Improvements 7-day measurements ‘OFF’ Veol, Vset, Esub Calculate Vpre-annual average 7-day measurements ‘ON’ Veol, Vset, Esub Calculate Vpost-annual average Determine Verified Savings 8 Performance Thresholds • Power Factor Power Factor on average > 98% (period) Power Factor minimum > 96% (period) • Phase Unbalance Must be < 0.15pu, or < 40 amps • Voltage Drop (Vd) for each voltage control zone Must be < 3.3% on primary at feeder peak loads 9 Performance Thresholds (continued) • Maximum Voltage Drop Variance (Vdv) between feeders within the same voltage control zone (during period) Must be < 0.25 p.u. or < 2.0V • Maximum Voltage Drop (Vd) for secondary – Must be < 4.0%, based on design standards and criteria • Voltage level must be > (114V+1/2 Bandwidth) and less than (126V-1/2 Bandwidth) 10 Why Performance Threshold are Critical Establishing thresholds helps to resolve key issue found in the pilot NEEA projects that did not perform well. • Reduces voltage fluctuation due to changing loads/conditions • Reduces losses in the distribution system • Allows recording periods to be minimized (1 week to establish daily load shapes and weekend/weekday load shapes) 11 VO Factor Determination • Uses Results from the NEEA DEI study to determine – Heating and cooling zones – Residential and commercial load – End-use load characteristics • Electric heating • Air conditioning 395 12 NEEA DEI Study VOf Sensitivity Minor impacts due to AC End-Use Load VOf with Heating Zone = 2 Cooling Zone = 2 Each Curve Represents % of Homes with Airconditioning 0.8 0 10 20 30 40 50 60 70 80 90 100 VOf Residental Homes 0.7 0.6 0.5 0.4 16% Variation 0.3 0.2 0.1 0 0 10 20 30 40 50 60 70 80 90 100 % Non-Electric 13 Voltage Reduction Calculation • Calculate ΔV for each voltage control zone • Dependant on which voltage control method – VFR Adjusted Average Voltage for VFR = [Regulator_Set_Point_Voltage_Setting – ½ * A * Annual_Load_Factor] – LDC/AVFC Adjusted Average Voltage for LDC = [Regulator_Set_Point_Voltage_Setting + Annual_Load_Factor *[B - 1/2 *A]] Where: A is the maximum voltage drop at peak load, and B is the Calculated Regulator Maximum Annual Volt-Rise 14 Method of Calculating Energy Savings (Delta V) Energy Saved = Change in voltage x Voltage Optimization Factor x Annual Energy + Energy Saved from System Improvements From proposed protocols E Saved = ΔV x VOf x E Annual + ΔE SI From NEEA’s DEI research and pilot VO calculation method already “approved” by RTF • ΔV - determined from this program • VOf - derived from NEEA load research study and confirmed by EPRI studies, and other industry pilots and research • E Annual – Metered Data from Utility • ΔE - Energy Saved from System Improvements 15