* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Systems Thinking and Modeling Climate Change
Economics of global warming wikipedia , lookup
Climate change denial wikipedia , lookup
Effects of global warming on human health wikipedia , lookup
Heaven and Earth (book) wikipedia , lookup
Climate governance wikipedia , lookup
Climatic Research Unit documents wikipedia , lookup
Climate change in Tuvalu wikipedia , lookup
Climate engineering wikipedia , lookup
Citizens' Climate Lobby wikipedia , lookup
Instrumental temperature record wikipedia , lookup
Physical impacts of climate change wikipedia , lookup
Carbon Pollution Reduction Scheme wikipedia , lookup
Climate change and agriculture wikipedia , lookup
Politics of global warming wikipedia , lookup
Atmospheric model wikipedia , lookup
Media coverage of global warming wikipedia , lookup
Fred Singer wikipedia , lookup
Climate sensitivity wikipedia , lookup
Global warming wikipedia , lookup
Public opinion on global warming wikipedia , lookup
Effects of global warming on humans wikipedia , lookup
Climate change in the United States wikipedia , lookup
Scientific opinion on climate change wikipedia , lookup
Climate change and poverty wikipedia , lookup
Attribution of recent climate change wikipedia , lookup
Climate change, industry and society wikipedia , lookup
Surveys of scientists' views on climate change wikipedia , lookup
Solar radiation management wikipedia , lookup
Climate change feedback wikipedia , lookup
Systems Thinking and Modeling Climate Change Amy Pallant, Hee-Sun Lee, and Sarah Pryputniewicz Youknowtheeffectsoftheproverbialbutterflyflappingitswings.Butwhatabout anautomobiledriver?Canasingledriver’sactionsaffectEarth’sclimate?Earth’s systemsarecomplexandfullofsurprisinginterdependencies.Howdowehelp studentsunderstandthosecomplexitiesandseekanswerstotheautomobile question,consideringcumulativeandglobaleffects?Oneapproachistoemphasize systemsthinkinginscienceeducation. Systemsthinkingsuggeststhatyoucanbestunderstandacomplexsystemby studyingtheinterrelationshipsofitscomponentpartsratherthanlookingatthe individualpartsinisolation.Asystemsapproachhelpsstudentsunderstand interrelatedelements,feedbackloops,andinthiscase,afocusonthewholeEarth (CenterforEcoliteracy2012).Withongoingconcernabouttheeffectsofclimate change,usinginnovativematerialstohelpstudentsunderstandhowEarth’ssystems connectwitheachotheriscritical. Modeling Earth's climate ThisarticledescribestheHigh‐AdventureScienceonlineclimatechangecurriculum called“ModelingEarth’sClimate”developedattheConcordConsortium(see"Onthe web").Thisfree,innovativecurriculumincorporatesdynamiccomputermodels developedintheNetLogomodelingenvironment(see"Ontheweb")thatenable studentstovisualizethecomplexinteractionsrelatedtoclimatechangescience.The modelsaredesignedtoallowstudentstochangevariablestohelpthemdiscover howtheindividualpartsrelatetothewholesystem.Whilewedon'texpectthe studentstounderstandeverysinglevariablethataffectsclimatechange,this approachhelpsstudentsmakesenseofhumaneffectsonEarth’ssystem. The models OurmodelsareidealforexploringEarthsystemscienceandhumanimpactonthe Earth.Themodelssimulatechangesinasystemandarebasedonmathematical algorithmsthatapproximatefundamentalphysicallaws(PallantandTinker2004). Researchshowsthatcomputationalmodelsandsimulationsallowstudentsto understandthroughexplorationthebehaviorofsystemsthataredifficultto understandbyothermeans(FeurtzeigandRoberts1999;Horwitz1999).Muchas scientistsdo,studentscanexperimentwithmodelsbycontrollingconditionsatthe start(parameters)andduringarun;theycanexplorecauseandeffectbecausethey canobservethechangesinthemodelsthatemergefromfundamentalscience‐based rules.Themodelshavevividgraphicsandrunquickly,sostudentscanrunmultiple experimentstogaininsightsbycarefullyobservingchangestothesystem.Thus, studentscanlearnbothcontentandtheprocessofsciencebyexperimentingwith themodels. IntheModelingEarth’sClimatecurriculumstudentsbeginbyusingacomputer modeltoexploretheeffectofcarbondioxideonglobaltemperature.Themodel helpsstudentsseehowcarbondioxidetrapsinfraredradiation,inturnincreasing thetemperature.StudentscanincreaseordecreaseCO2amountsinthemodeland observehowthechangesaffectthesystembyinterpretingtheoutputgraphtothe leftofthemodel(Figure1).Byexperimentingwithextremes—addinglotsofCO2or removingmostoftheCO2—andpayingattentiontotheresultinggraph,students discoverforthemselvestherelationshipbetweenatmosphericcarbondioxideand temperature. Studentsencounterincreasinglycomplexmodelsastheyproceedthroughthe curriculumandshifttheirfocusfromthepartstothewhole.Theylearnthatthe actualtemperatureincreaseonEarthisgreaterthanwhatwouldbeexpectedifonly carbondioxidelevelswereconsidered.Thecurriculumintroducesnewvariables, suchaswatervapor,intothemodelandasksstudentstoexplaintherelationships amongtheinterrelatedpartsofthesystem.Studentscan,inthiscase,explorethe effectoftwodifferentgreenhousegasesanddiscovertheinterrelationshipsamong thelevelsofCO2,theamountofwatervaporintheatmosphere,andtheeffectson atmospherictemperatures. Feedback loops Feedbackloopscanenhanceorbufferchangesthatoccurinasystem.Positive feedbackamplifieschanges,andnegativefeedbacktendstodampenchanges (ScienceEducationResourceCenteratCarletonCollege2003).Inclimatechange, positivefeedbackacceleratestemperaturerise;negativefeedbackdeceleratesit. TheModelingEarth’sClimatecurriculumexploresdifferentfeedbackloops.For example,becauseiceisbothlightcoloredandreflective,sunlightthathitsice bouncesbacktospace,limitingwarming.However,asEarthgetswarmer,icemelts, revealingoceanorland,whicharedarkerthaniceandthereforeabsorbmoreofthe sun’senergy.Thisleadstomorewarming,whichinturnleadstomoreicemelting, andsooninthispositivefeedbackloop.Inthecurriculum,studentscanuseamodel tochangethepercentoficecoveroramountofgreenhousegasesandcorrelate thesechangestochangesinEarth’stemperature. Anotherfeedbackloophighlightedinthecurriculumistheeffectsofcloudcoveron Earth’stemperature.This,too,isabalancebetweensunlightreflectedoffcloudsand awayfromEarth(acoolingeffect)andinfraredradiationfromEarthabsorbedby cloudsandre‐radiatedintotheatmosphere(awarmingeffect).Inthemodel, studentscanchangetheamountofcloudcoverandthenanalyzetheoutputgraph (Figure2).(SeeKahn,p.xxofthisissue,formoreabouttheeffectofcloudson climate.)Finally,thecurriculumalsomodelstherelationshipsamongCO2, temperature,anddissolvedCO2intheoceans.Studentscanexplorewhathappensto thelevelofCO2intheairandoceansasatmospherictemperaturechanges.Such feedbackloopsarecomplexinthemselvesandareevenmorecomplexwhen consideredaspartofanintegratedclimatesystem. Climate models are complex Ourbesthopeofunderstandinghowglobaltemperaturechangesovertime,and howhumansmaybeaffectingit,liesintheclimatemodelsscientistshave developed.Actualclimatemodelsaresomeofthemostcomplexmodelsinallfields ofscience.Clearly,thecurriculummodelsaremuchsimpler,yettheyprovideuseful toolstoteststudentideas,makepredictions,andunderstandsystemthinking. ModelingEarth’sClimatescaffoldsstudentthinkingbyfocusingonhowthemodel representspartsofthesystem,theinteractionswithinthesystem,andthemodel limitations.Thecurriculumdoesthisbyaskingexplicitquestionsaroundmodels suchas“Howdoesthelevelofcarbondioxideaffectthelevelofwatervaporinthe atmosphere?”“Howcanyoutellthatamodelisgood?""Whatkindsoftestscanyou runtoassessthevalidityofthemodel?” AFrameworkofK‐12Education:Practices,CrosscuttingConcepts,andCoreIdeas (NRC2012)statesthatmodelscanbevaluableforexploringasystem’sbehaviors. Bysimulatingclimateinthepast,scientistscanseehowwellthemodelscompareto real‐worlddataandjudgehowtheymightpredictthefuture.TheHigh‐Adventure Sciencecurriculumalsohasstudentscomparemodeloutput—andtheirown conclusions—toreal‐worlddata. Asstudentsincreasethecomplexityofthemodels,theymovefromavaguesense that“everythinginteracts”tomoreconcreteexamplesofthephysical,chemical, biological,andhumaninteractionsrelatedtoclimatechangeoutcomesemerging fromthemodel.Embeddedassessmentsaskstudentstodescribeexplicitlythe behaviorofthesystemanditsmanyinteractingvariables,aswellasthecause‐and‐ effectrelationshipsinthesystem.Forexample,studentsmustreporthowchanges intheamountoficecoveringEarth’ssurfacecanaffectEarth’stemperature.Student responsestothisquestionincluded:“Themoreicecoverage,thecolderitwillget becausethesun’sraysarereflectedbackoutoftheatmosphere,”and,“Whenthere ismoreice,theicewillreflectalloftheenergyfromthesunandthereforetheEarth willbealotlesswarm.”Thistypeofquestionmakesstudentsthinkaboutthe interrelationshipsinthesystem.Askingstudentstoexplainthemechanismsof complexfeedbackloopsalsorequireshigher‐orderthinkingaboutinterrelated variables. Wehaveanalyzedstudentpre‐andpost‐testworkfor260middleandhighschool EarthScienceandEnvironmentalscienceclasses.Thetestincludeditemsthat focusedoncontentandnatureofscienceskills,consistingofmultiplechoiceand short‐answerquestions.Weconcludedthatstudentsofalllevelscanimprovetheir systemsthinkingmodeledinourclimatechangecurriculum.Thetestcanbefound ontheHigh‐Adventurewebsite(see"Ontheweb"). Human interactions and the climate system Youcan’tstudyclimatechangethesedayswithoutlookingspecificallyat anthropogeniccausesofchange.ClimateLiteracy,TheEssentialPrinciplesofClimate Science(U.S.GlobalChangeResearchProgram2009)states:“Theoverwhelming consensusofscientificstudiesonclimateindicatesthatmostobservedincreasein globalaveragetemperaturessincethelatterpartofthe20thcenturyisverylikely duetohumanactivities,primarilyfromincreasesingreenhousegasconcentrations resultingfromburningoffossilfuels.”(p.6)Thisbringsusbacktoouroriginalsetof questions:CanasingleautomobiledriveraffectEarth’sclimateandhowdowehelp studentslearnabouttheroleofhumansinchangingclimate?TheHigh‐Adventure Sciencecurriculumincludesopportunitiesforstudentstoexplorehowhuman‐ producedemissions(basedonburningfossilfuels)canchangeaverageEarth temperaturesovertime.Studentstestwhathappenswhentheyincreasehuman‐ producedgreenhousegasemissionsandwhathappenswhentheyreducehuman‐ causedemissions.Thelevelofemissionsisonemorevariableinthecomplexsystem thatismodeled.However,themodelaloneisnotenough;studentsmustalso compareoutcomestoreal‐worlddata.Thecurriculumhasstudentsanalyzeclimate changebasedonicecoredata(Figure3),oceanatmospheredata,andtheKeeling curvegraphsofongoingatmosphericchangeinCO2concentration,amongothers. Climatechangescienceiscomplex,andstudentsarenotexpectedtomasterevery detailthroughthecurriculum.Butgreatercomprehensiondoesrequiresystems thinking,namelytheabilitytounderstandhowvariouscomponentsinfluenceeach otherwithinacomplexsystem,themodelsusedtorepresentthesesystems,andthe interconnectionsamongthecomponentparts. TheFrameworkincludesabroaderrangeofideasinEarthandSpacesciencethan previousefforts.Coreideasincludefocuson1)Earth’sSystems,2)Earthandhuman activity,and3)anunderstandingofscientificpractices.Prominentinallthreeof thesecoreideasisclimatechangescience.TheFrameworkspecifiesthatstudents shouldlookatfeedbackloops,exploreinterconnectedfeaturesofEarth’sclimate system,comparehistoricandpresentclimatechange,aswellasstudythewaysin whichhumanactivitiesrelatetoEarth’sprocesses.TheModelingEarth’sClimate curriculumstronglyintegratesthesecoreconcepts.(NationalResearchCouncil, 2012,p196‐198). Conclusion Howweexamineproblemsdependsinpartonourworldview.Withanysystemthe wholeisdifferentthanthesumofitsparts.TheHigh‐AdventureScienceModeling Earth’sClimatecurriculumengagesstudentsinsystemsthinking,enablingthemto constructtheirownknowledgeonfactorsthatinfluenceclimatechange,compareit todatafromthescientificcommunity,andthinkcriticallyaboutcomplexitiesof climatechange. AmyPallant([email protected])istheprincipalinvestigatorontheHigh‐ AdventureScienceproject,andSaraPryputniewicz([email protected])is aresearchassistant,bothattheConcordConsortiuminConcord,Massachusetts;Hee‐ SunLee([email protected])isavisitingassistantprofessorattheUniversity ofCalifornia,SantaCruz. Acknowledgements TheauthorthanksDr.R.Tinkerforhisworkondevelopingthemodelsinthe curriculum.ThisworkissupportedbytheNationalScienceFoundation(NSF)under grantDRL‐0929774.Anyopinions,findings,andconclusionsorrecommendations expressedinthispaper,however,arethoseoftheauthorsanddonotnecessarily reflecttheviewsoftheNSF. On the web ConcordConsortium:www.concord.org/projects/high‐adventure‐science NetLogo:http://ccl.northwestern.edu/netlogo/ References CenterforEcoliteracy.2012.Exploresystemsthinking.www.ecoliteracy.org/nature‐ our‐teacher/systems‐thinking Feurtzeig,W.,andN.Roberts.1999.Modelingandsimulationsinscienceand mathematicseducation.NewYork:Springer. Horwitz,P.1999.Designingcomputermodelsthatteach.InW.FeurzeigandN. Roberts(Eds.),ModelingandSimulationinScienceandMathematicsEducation (pp.179‐196).NewYork:Springer. NationalResearchCouncil.2012.AFrameworkforK‐12scienceeducation:Practices, crosscuttingconcepts,andcoreideas.Washington,DC:TheNationalAcademies Press. Pallant,A.,andR.Tinker.2004.Reasoningwithatomic‐scalemoleculardynamics models.JournalofScienceEducationandTechnology13:51–66. ScienceEducationResourceCenteratCarletonCollege.2003.FeedbackLoops. Retrievedfrom.http://serc.carleton.edu/introgeo/models/loops.html U.S.GlobalChangeResearchProgram.2009.Climateliteracy:Theessential principlesofclimatesciences. http://downloads.climatescience.gov/Literacy/Climate%20Literacy%20Booklet %20Hi‐Res.pdf Figure1:ClimateModel.Thismodelallowsstudentstofollowenergy(representedby yellowarrows)fromthesunastheyinteractwithgreenhousegases(representedby greendots0andtheEarth’ssurfacewheretheyarereflectedasinfraredradiation (representedbyredarrows)orabsorbedasheat.Studentscanchangetheamountof CO2intheatmosphereAsstudentsincreasetheC02thetemperatureincreasesasseen inthegraph. Figure2:Thismodelallowsstudenttochangethecloudcovertoseehowanincrease inclouds,inthiscase,lowerstemperature.Studentsobservetherelationshipbetween cloud‐cover,incomingsolarradiation(yellowarrows),infraredradiations(red arrows)greenhousegases(blueandgreendots)andland,oceanandicetohelp explaintheresultinggraph. Figure3.Atmosphericcarbondioxideconcentrationduringthepast417,000years. http://upload.wikimedia.org/wikipedia/commons/8/88/CO2‐417k.png