Download Math 095 – Formulas

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Big O notation wikipedia , lookup

Abuse of notation wikipedia , lookup

Positional notation wikipedia , lookup

Location arithmetic wikipedia , lookup

Large numbers wikipedia , lookup

Arithmetic wikipedia , lookup

Hyperreal number wikipedia , lookup

Factorization wikipedia , lookup

Line (geometry) wikipedia , lookup

System of polynomial equations wikipedia , lookup

Division by zero wikipedia , lookup

Addition wikipedia , lookup

Elementary algebra wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Elementary mathematics wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Transcript
Math 095 Reference Sheet
Order of Operations: (Please Excuse My Dear Aunt Sally)
Parentheses
Exponents
Multiplication
Done at the same time - left to right
Division
Addition
Done at the same time - left to right
Subtraction
Slope Formulas:
π‘š = π‘ π‘™π‘œπ‘π‘’
Q
π‘š=
π‘Ÿπ‘–π‘ π‘’
π‘Ÿπ‘’π‘›
π‘π‘œπ‘–π‘›π‘‘π‘  = (π‘₯1 , 𝑦1 ) π‘Žπ‘›π‘‘ (π‘₯2 , 𝑦2 )
or π‘š =
π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 𝑦 (βˆ†π‘¦)
π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘₯ (βˆ†π‘₯)
}
}
𝑦 βˆ’π‘¦
or π‘š = π‘₯2 βˆ’π‘₯1
2
1
Horizontal Line:
𝑦 = π‘šπ‘₯ + 𝑏
𝑦 βˆ’ 𝑦1 = π‘š(π‘₯ βˆ’ π‘₯1 )
Vertical Line:
What Can Slope and Intercepts Tell You About lines?
One Line
Two Lines
Y - Intercept formula:
Point – Slope formula:
𝑦=𝑏
π‘₯=π‘Ž
Slope:
Positive
Negative
Zero
Undefined
Same
Same
Opposite Reciprocal
Different
y-Int:
Any
Any
Any
None
Different
Same
Same or Different
Same or Different
Increasing
Decreaseing
Horizontal
Vertical
Parrallel
Coinciding
Perpendicular
Intersecting
Solving Linear Equations:
1. Deal with any parentheses in the problem.
2. Combine like terms on each side of the equal sign.
3. Move terms with the needed variable on one side of
the equal sign everything else to the other side.
4. Isolate the needed variable.
Interest:
𝐴=𝑃+𝐼
Simple
𝐼 = π‘ƒπ‘Ÿπ‘‘
First, Outside, Inside, Last
(π‘Ž1 π‘₯ + 𝑏1 )(π‘Ž2 π‘₯ + 𝑏2 ) = π‘Ž1 π‘Ž2 π‘₯ 2 + (π‘Ž1 𝑏2 + π‘Ž2 𝑏1 )π‘₯ + 𝑏1 𝑏2
Factoring Special Forms
𝐴2 + 2𝐴𝐡 + 𝐡2 = (𝐴 + 𝐡)2
𝐴2 βˆ’ 2𝐴𝐡 + 𝐡2 = (𝐴 βˆ’ 𝐡)2
𝐴2 βˆ’ 𝐡2 = (𝐴 + 𝐡)(𝐴 βˆ’ 𝐡)
3
𝐴 + 𝐡3 = (𝐴 + 𝐡)(𝐴2 βˆ’ 𝐴𝐡 + 𝐡2 )
𝐴3 βˆ’ 𝐡3 = (𝐴 βˆ’ 𝐡)(𝐴2 + 𝐴𝐡 + 𝐡2 )
P=Principle
r = rate (decimal)
A=Future Amount
t = time
n = # of times compounded per year
Continuously
Compound
Compounded
π‘Ÿ 𝑛𝑑
𝐴 = 𝑃 (1 + )
𝑛
𝐴 = 𝑃𝑒 π‘Ÿπ‘‘
Step 3:
Step 4:
Step 5:
PT
P2
Use with π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐
The β€œAC” Method:
Step 1:
Step 2:
Mixture Problems: A β€œVisual” Way
P1
Binomial Expansion:
You may know it as a four letter word starting with β€œF”
Multiply β€œa” and β€œc”
Find factors of your new number that will add to
equal β€œb”.
Rewrite β€œbx” using your two new numbers.
Factor by grouping.
Move your β€œcommon” binomial out, and make your
other two terms a new binomial
Quadratic Equation:
A1
A2
AT
π‘₯=
Discriminant:
π‘¨πŸ π‘·πŸ + π‘¨πŸ π‘·πŸ = 𝑨𝑻 𝑷𝑻
Variation:
β€œk” the constant of variation
Varies with the Square
Directly
𝑦 =π‘˜βˆ™π‘₯
𝑦 = π‘˜ βˆ™ π‘₯2
Inversely
Page 1 of 2
𝑦=
π‘˜
π‘₯
𝑦=
π‘˜
π‘₯2
+
0
2 real solutions
2 complex solutions
1 real solution
βˆ’π‘ ± βˆšπ‘ 2 βˆ’ 4π‘Žπ‘
2π‘Ž
The Vertex of a Quadratic:
𝑓(π‘₯) = π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐
The vertex form:
𝑏 2 βˆ’ 4π‘Žπ‘
A is the amount and P is the percent. One of these will be missing
Use with π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐 = 0
𝑓(π‘₯) = π‘Ž(π‘₯ βˆ’ β„Ž)2 + π‘˜
The vertex is the point (β„Ž, π‘˜)
(β„Ž, π‘˜) = (βˆ’
𝑏
𝑏
, 𝑓 (βˆ’ ))
2π‘Ž
2π‘Ž
Distance, Rate, and Time
𝑑 = π‘Ÿπ‘‘
Rev 2.0
4/17/2015
Math 095 Reference Sheet
Square
Rectangle
Triangle
Parallogram
Trapazoid
Circle
Perimeter
𝑃 = 4𝑠
𝑃 = 2𝑙 + 2𝑀
𝑃 = 2π‘Ž + 2𝑏
𝐴 = 𝑠2
𝐴 = 𝑙𝑀
𝑃 =π‘Ž+𝑏+𝑐+𝐡
1
𝐴 = β„Ž(𝑏 + 𝐡)
2
𝐢 = 2πœ‹π‘Ÿ
Area
Cube
Rectangler Solid
𝑃 = π‘Ž+𝑏+𝑐
1
𝐴 = π‘β„Ž
2
Right Circular
Cylinder
Cone
Right Pyramid
Sphere
Volume
𝑉 = 𝑠3
𝑉 = π‘™π‘€β„Ž
𝑉 = πœ‹π‘Ÿ 2 β„Ž
1
𝑉 = πœ‹π‘Ÿ 2 β„Ž
3
1
𝑉 = π‘™π‘€β„Ž
3
4
𝑉 = πœ‹π‘Ÿ 2
3
Surface
Area
𝑆 = 6𝑠 2
𝑆 = 2𝑙𝑀 + 2π‘™β„Ž + 2β„Žπ‘€
𝑆 = 2πœ‹π‘Ÿβ„Ž + 2πœ‹π‘Ÿ 2
𝑆 = πœ‹π‘Ÿβˆšπ‘Ÿ 2 + β„Ž2 + πœ‹π‘Ÿ 2
𝑀 2
𝑙 2
𝑆 = 𝑙𝑀 + π‘™βˆš( ) + β„Ž2 + 𝑀 √( ) + β„Ž2
2
2
𝑆 = 4πœ‹π‘Ÿ 2
𝐴 = π‘β„Ž
Pythagorean Theorem:
Between Two Points
(π‘₯1 , 𝑦1 ) and (π‘₯2 , 𝑦2 )
The hypotenuse β€œc” is the
longest side and it is
opposite the right angle!
Distance
𝑑 = √(π‘₯2 βˆ’ π‘₯1 )2 + (𝑦2 βˆ’ 𝑦1 )2
𝑖 = βˆšβˆ’1
Complex Numbers:
Midpoint Formula
π‘₯2 + π‘₯1 𝑦2 + 𝑦1
(
,
)
2
2
π‘Ž2 + 𝑏 2 = 𝑐 2
𝐴 = πœ‹π‘Ÿ 2
Complex Numbers Have a
Real Part and an Imaginary
Part
Real
π‘Ž
+
Imaginary
𝑏𝑖
Complex numbers have complex conjugates
Circles:
Center = (𝒉, π’Œ)
Radius =
𝒓
Absolute Value: The distance from zero
!!! Just think it makes things positive !!!
|π‘₯ βˆ’ π‘Ž| = 𝑏
(π‘₯ βˆ’ π‘Ž) = 𝑏
βˆ’(π‘₯ βˆ’ π‘Ž) = 𝑏
OR
π‘₯βˆ’π‘Ž =𝑏
βˆ’π‘₯ + π‘Ž = 𝑏
π‘₯ =π‘Ž+𝑏
π‘₯ =π‘Žβˆ’π‘
2
(π‘₯ βˆ’ β„Ž) + (𝑦 βˆ’ π‘˜) = π‘Ÿ
Interval
Set Builder
π‘₯<π‘Ž
(βˆ’βˆž, π‘Ž)
{π‘₯| π‘₯ < π‘Ž }
π‘₯β‰₯𝑏
[𝑏, ∞)
{π‘₯| π‘₯ β‰₯ 𝑏 }
π‘Ž<π‘₯<𝑏
(π‘Ž, 𝑏)
{π‘₯| π‘Ž < π‘₯ < 𝑏 }
π‘Ž<π‘₯≀𝑏
(π‘Ž, 𝑏]
{π‘₯| π‘Ž < π‘₯ ≀ 𝑏 }
π‘Žβ‰€π‘₯<𝑏
[π‘Ž, 𝑏)
{π‘₯| π‘Ž ≀ π‘₯ < 𝑏 }
π‘Žβ‰€π‘₯≀𝑏
[π‘Ž, 𝑏]
{π‘₯| π‘Ž ≀ π‘₯ ≀ 𝑏 }
Page 2 of 2
2
π‘Ž + 𝑏𝑖
π‘Ž βˆ’ 𝑏𝑖
When you multiply remember to treat π’Š like 𝒙
Inequalities:
Remember to change the direction of the
inequality when multiplying or dividing by
a negative.
Solution Center: β€œHow to answer the question”
A number that makes the equation true
Solve for β€œx”
An ordered pair that makes the equation true
Find a point
The point(s) where a graph crosses the X Axis
X -Intercept
The point(s) where a graph crosses the Y Axis
Y-Intercept
Notation
2
π‘Žβ‰₯𝑏
βˆ’1 βˆ™ π‘Ž ≀ βˆ’1 βˆ™ 𝑏
βˆ’π‘Ž ≀ βˆ’π‘
until you get π’ŠπŸ which is – 𝟏.
𝑖= 𝑖
𝑖5 = 𝑖
2
𝑖 = βˆ’1
𝑖 6 = βˆ’1
3
𝑖 = βˆ’π‘–
𝑖 7 = βˆ’π‘–
4
𝑖 = 1
𝑖8 = 1
π‘₯=
(π‘₯, 𝑦)
(
,0)
(0,
)
Graph
Meter
Conversions
Gram
kilo hecto deca UNIT deci
1000 100
10
1
0.1
1 π‘šπ‘– = 5280 𝑓𝑑
1 𝑙𝑏 = 16 π‘œπ‘§
1 π‘”π‘Žπ‘™ = 4 π‘žπ‘‘ = 16 𝑐
9
𝐹 = 𝐢 + 32
5
Rev 2.0
Liter
centi
0.01
milli
0.001
1 π‘šπ‘– = 1.61 π‘˜π‘š
1 𝑙𝑏 = 0.45 π‘˜π‘”
1 π‘”π‘Žπ‘™ = 3.79 𝐿
1 π‘ π‘žπ‘“π‘‘ = 0.09 π‘š2
4/17/2015