* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Updated file
Electrical resistivity and conductivity wikipedia , lookup
Speed of gravity wikipedia , lookup
Electromagnetism wikipedia , lookup
Casimir effect wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
Magnetic monopole wikipedia , lookup
History of electromagnetic theory wikipedia , lookup
Maxwell's equations wikipedia , lookup
Field (physics) wikipedia , lookup
Lorentz force wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Physics 212 Exam #1 NAME _______________________ Write down your name also on the back of the final page of this exam. -12 2 C /N.m2 Use o= 8.85 x 10 9 , o= 9 x 10 N.m2/C2 , g = 10 m/s2 1. The figure below shows two particles fixed in place: a particle of positive charge +18e at the origin, and a particle of negative charge -2e at 6 cm far away. Here e is the magnitude of the charge of an elementary charge. 1A At what point along the axis that joins the charges (other than infinite far away) can a proton 3 cm be placed so + 18e - 2e that it is in x equilibrium? Indicate your 6 cm answer with an “x” drawn in the graph provided above. Indicate explicitly also the distance between the proton and the closest charge 1B Draw the electric fields that exist i) at 1 cm to the left and ii) at 1 cm to the right of the proton’s 3 cm position found + 18e - 2e in part 1A x above. 6 cm ______________________________________________________________________________ 2. The figure shows a particle of positive charge q = +10-3 Coulomb, placed at the origin. 2A Rank the positions P, S and U according to the magnitude of the electric filed existent at those points. Greatest first. a) P, S, U, b) U, S=P c) P, U=S d) U, P, S e) NA Z U (2.5, 0, 2.5) X P (0,4,3) Y +q S (5,5,0) Coordinates given in units of cm. 2B Find the electric field at point P (in units of 109 N/C) a) (0, 2.9, 2.2) b) (-3.1, -3.1, 0) d) (3, 0, 4) e) NA c) (0, 4.4, 5.8) ______________________________________________________________________________ 3. The figure below shows a compact sphere of radius R=6 cm with charge Q = + 9 C uniformly distributed through its volume 3.A In the diagram provided below, sketch the magnitude of the electric field E(r) established by the uniformly distributed charge distribution E(r) inside and outside the sphere R r R 3.B The electric field E at the point (3 cm, 4 cm, 0) is equal to (in units of 107 N/C) a) (1.9, 1.9, 0) b) 0.6, 0.8, 0) c) (1.1, 1.5, 0) d) (0.4, 0.3, 1) e) NA _______________________________________________________________________ 4. 4A The figures show two uniformly charged spheres. The positive charge on sphere B is 2 times the positive charge on sphere A. Which force diagram correctly shows the magnitude and direction of the electrostatic forces acting on each sphere? a) b) c) d) e) f) a) +++ ++ ++ +++ B b) +++ ++ ++ +++ B d) + ++ ++ +++ B f) A c) A e) + A + +++ ++ ++ +++ +++ ++ ++ +++ B ++ ++ ++ +++B A A A + B 4B The figure shows two point charges of charge +3q and – q respectively are located along long the x-axis and equidistance from the origin. Sketch, the electric field lines everywhere around the charges AND the equipotential surfaces passing through A, B and C, respectively. (Point B is the middle A C point between the B charges). -q + 4q 5. The figure below shows a parallel-plate capacitor. In what follows, assume for simplicity that the electric field around the center of the plates is equivalent to the electric field produced by infinite plates charged uniformly all over their surface. In the figures, Q stands for the initial charge accumulated in the top plate, E is the electric field in the central region between the plates, and d is the distance between the plates. 5A While keeping the battery connected to the plates, an external agent (not shown in the figure) increases the distance between the plates + Ei 2V - Qi + di 2V - At t=0 Qf Ef df At t > 0 Which of the following expression(s) describe(s) correctly what happens as the distance between the plates is increased? a) The electric field increases. b) The magnitude of the charge in each plate increases. c) The electric field remains constant. d) The magnitude of the charge in each plate decreases. e) The electric potential between the plates decreases. 5B In this case the capacitor is initially charged and then the battery is disconnected. Ei At t=0 Qi Qf di Ef df At t > 0 Which of the following expression(s) describe(s) correctly what happens as the distance between the plates is increased? a) The electric field increases. b) The electrical potential energy stored in the capacitor decreases. c) The electric field remains constant. d) The magnitude of the charge in each plate decreases. e) The electric potential between the plates decreases. 6. 6A A graph of the electric potential as a function of x is given in the figure below. Plot (on scale) the electric field component Ex as a function of x (use the rightside diagram). Ignore the points on the graph where the slop changes discontinuously. 8 E(x) 8 V(x) 4 6 v (x ) V o lt s v (x ) V o lt s 6 x 4 2 0 2 1 cm 1 cm x 0 A B C D E G F H x 0 I A B C D E F G H I 6B Two charges, one positive (q) and the other negative (-q) are located along the zaxis, and separated by a constant distance “d”. This charge configuration Z r P (x,y,z) is called a dipole. For a location, such as point P in the figure, very far away from +q the dipole, the electric potential is given d Y by -q V ( x , y, z ) X 2 2 2 1/ 2 r (x y z ) 1 qd z 2 2 2 3/ 2 4 0 ( x y z ) 1 qd z 4 0 r3 Which of the following expressions gives the z-component of the electric field? a) qd 3z 2 r 2 4 0 b) r5 d) qd z r 4 0 r 3 / 2 qd 3 xz c) 4 0 r 5 e) qd 3 zy r 2 4 0 qd z 2 r 2 4 0 r5 / 2 r3 / 2 7. 7A In the figure shown below, the magnitude of the electric field at point “P” due to the four point charges is equal to (in units of N/C): a) 4.4 x 108 b) 3.58 x 108 c) 0.4 x 108 d) 0 e) NA 7B In the figure shown below, what is the electric potential at point “P”, if V=0 at infinity (in units of Volt)? a) 1.32 x 107 b) 2.4 x 106 d +7q d d P d c) - 1.2 x 106 d) 0 e) NA -24q +6q q=1C d= 3 cm +7q 8. 8A How much energy (in Joules) is stored in the system shown in the figure? q3 h h q1 h = 10 cm r = 6 cm r q2 q1= +10 C q2= -20 C q3= +30 C a) 23 b) 17 c) 57 d) 71 e) NA 8B Starting with the configuration given above, how much net work must an external agent do to exchange the positions of i) q1 and q2 , and ii) q1 and q3, respectively? a) 0, 0 b) ≠ 0, ≠ 0 c) 0, ≠ 0 e) There is not enough information to decide. d) ≠ 0, 0 9. 9A Find the equivalent capacitance of the circuit shown, where C1= 1 F, C2 = 2 F and C3 = 1/3 F: a) 3 / 10 F b) 2 F c) 5 F d) 8 / 3 F e) NA 9B Find the equivalent capacitance of the circuit shown, where C1= 1 F, C2 = 2 F and C3 = 1/3 F: a) 10/3 F b) 2 F c) 4/5 F d) 8/3 F C3 + C2 C1 _ V C2 _+ C3 V C1 e) NA ______________________________________________________________________________ 10 10A The figure below shows plots of charge versus potential difference for three parallel-plate capacitors, which have the plate areas and separations given in the table. Which of the plots goes with which of the capacitors? Give your answer by filling out the “Graph” column in the table q Capacitor Area Separation Graph 1 A d 2 2A d b a 3 A 2d c a b c V 10B The voltage across the capacitor C2, before and after introducing a dielectric slab (k = 5) are, respectively: a) 3V, 3 V b) 2V, 1V C1=1 F c) 3V, 1V d) 1V, 1V _+ V = 6 Volts e) NA C2= 1 F k=5 BONUS QUESTION (3 points) B1. The figure shows two disks and a flat ring, each with the same uniform charge Q. Rank the objects according to the magnitude of the electric field they create at point A (which are at the same vertical height); greatest first. A A R A 2R P S R 2R U Answer___P, S, U________________ B2. What are the units of Volts in MKS? Answer____Kg m2/ (C s2)___________________ Some formulas: nano 1 q 2 q1 u Coulomb's Law: F 4 0 r 2 Electric field, along the z-axis, due to a charge Q distributed uniformly along a thin ring of radius R.: E 1 Qz 4 0 z R 2 2 3/ 2 kˆ For an infinite uniformly charged sheet: E = /2o Gauss' Law = E ds = q /o , where q is the net charge inside the gaussian surface S Definition of Electric Potential V (r ) Potential difference W ext ( r) q 0 q0 V V E d s B B A A Electric potential due to a point charge q: V 1 q 4 r 0 Relationship between E and V: About capacitance Ex = - dV/dx Q=CV For a parallel-plate capacitor C = Ao /d U = CV2 / 2 = Q2 / 2 C Capacitors connected in parallel Cequiv = C1 + C2 + C3 Capacitors connected in series 1/Cequiv = (1/C1) + (1/C2) +(1/C3) When filing a capacitor with a dielectric: Capacitance increases by a factor of k sin d cos Cos d sin