Download Welcome`to`AP`Chemistry!

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Chemical bond wikipedia , lookup

Click chemistry wikipedia , lookup

Catalysis wikipedia , lookup

Abundance of the chemical elements wikipedia , lookup

Water splitting wikipedia , lookup

Transition state theory wikipedia , lookup

Chemical reaction wikipedia , lookup

Hydroxide wikipedia , lookup

Acid–base reaction wikipedia , lookup

History of chemistry wikipedia , lookup

Biochemistry wikipedia , lookup

Redox wikipedia , lookup

Isotopic labeling wikipedia , lookup

Bioorthogonal chemistry wikipedia , lookup

Unbinilium wikipedia , lookup

Chemistry: A Volatile History wikipedia , lookup

Electrochemistry wikipedia , lookup

Hydrogen atom wikipedia , lookup

Freshwater environmental quality parameters wikipedia , lookup

Ununennium wikipedia , lookup

PH wikipedia , lookup

Organosulfur compounds wikipedia , lookup

Electrolysis of water wikipedia , lookup

Debye–Hückel equation wikipedia , lookup

Ion wikipedia , lookup

History of molecular theory wikipedia , lookup

Rutherford backscattering spectrometry wikipedia , lookup

Gas chromatography–mass spectrometry wikipedia , lookup

Rate equation wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

IUPAC nomenclature of inorganic chemistry 2005 wikipedia , lookup

Metalloprotein wikipedia , lookup

Atomic theory wikipedia , lookup

Stoichiometry wikipedia , lookup

Transcript
Welcome'to'AP'Chemistry!'
I"look"forward"to"next"year,"and"hope"that"you"all"do,"as"well."In"this"packet"you"will"find"your"
summer"assignment.""
"
I"expect"you"to"read"the"entire"thing,"and"complete"all"the"problems"associated"with"each"
section."The"entire"packet"will"be"due"on"the"Monday"we"return"from"summer"break,"in"a"Haiku"
Dropbox."This"will"also"be"an"excellent"preparation"for"your"first"unit"test,"which"will"be"held"on"
the"Friday"we"get"back"from"summer"vacation."
"
In"this"packet,"you"will"find"four"major"sections:"
1.! Significant"Figures"and"Measurements"
2.! Scientific"Notation"
3.! Naming"compounds"
4.! Stoichiometry""
"
Pay"special"attention"to"parts"3"and"4."While"it"is"true"that"parts"1"and"2"are"very"important,"it"is"
imperative"that"you"get"a"jump"on"naming"and"stoichiometry"in"order"to"stay"afloat"for"the"rest"
of"the"year."I"also"expect"you"to"have"memorized"the"entire"chart"of"polyatomic"ions"before"you"
return"to"class,"and"that"will"be"a"very"visible"portion"of"the"first,"and"every"subsequent,"test."
"
If"you"have"trouble"with"any"of"these"topics"as"you"progress"through"the"packet,"you"may"obtain"
a"copy"of"the"text"book"(In"your"Kindle"Store"search"“Brown"LeMay"13th"Edition”"to"rent"or"buy"
the"text)"or"search"the"internet"for"relevant"help."There"are"tons"of"great"videos"out"there"that"
are"a"wonderful"source"of"review"if"you"need"it."
"
It’s"going"to"be"a"lot"of"work,"but"we’ll"get"through"this"together!"
"
If"you"have"any"questions"over"the"summer,"don’t"hesitate"to"email"me"(but"don’t"expect"a"
response"too"terribly"quickly,"as"I"travel"with"my"family"over"the"summer)."
"
See"you"all"in"August!"
Dr."Gill"
[email protected]"
"
"
Significant Figures in Measurement and Calculations
A successful chemistry student habitually labels all numbers, because the unit is important. Also of great
importance is the number itself. Any number used in a calculation should contain only figures that are
considered reliable; otherwise, time and effort are wasted. Figures that are considered reliable are called
significant figures. Chemical calculations involve numbers representing actual measurements. In a
measurement, significant figures in a number consist of:
Figures (digits) definitely known + One estimated figure (digit)
In class you will hear this expressed as "all of the digits known for certain plus one that is a guess."
Recording Measurements
When one reads an instrument (ruler, thermometer, graduate, buret, barometer, balance), he expresses
the reading as one which is reasonably reliable. For example, in the accompanying illustration, note the
reading marked A. This reading is definitely beyond the
7 cm mark and also beyond the 0.8 cm mark. We read
the 7.8 with certainty. We further estimate that the
reading is five-tenths the distance from the 7.8 mark to
the 7.9 mark. So, we estimate the length as 0.05 cm
more than 7.8 cm. All of these have meaning and are therefore significant. We express the reading as
7.85 cm, accurate to three significant figures. All of these figures, 7.85, can be used in calculations. In
reading B we see that 9.2 cm is definitely known. We can include one estimated digit in our reading, and
we estimate the next digit to be zero. Our reading is reported as 9.20 cm. It is accurate to three significant
figures.
Rules for Zeros
If a zero represents a measured quantity, it is a significant figure. If it merely locates the decimal point, it
is not a significant figure.
Zero Within a Number. In reading the measurement 9.04 cm, the zero represents a measured
quantity, just as 9 and 4, and is, therefore, a significant number. A zero between any of the other digits in
a number is a significant figure.
Zero at the Front of a Number. In reading the measurement 0.46 cm, the zero does not
represent a measured quantity, but merely locates the decimal point. It is not a significant figure. Also, in
the measurement 0.07 kg, the zeros are used merely to locate the decimal point and are, therefore, not
significant. Zeros at the first (left) of a number are not significant figures.
Zero at the End of a Number. In reading the measurement 11.30 cm, the zero is an estimate
and represents a measured quantity. It is therefore significant. Another way to look at this: The zero is not
needed as a placeholder, and yet it was included by the person recording the measurement. It must have
been recorded as a part of the measurement, making it significant. Zeros to the right of the decimal point,
and at the end of the number, are significant figures.
Zeros at the End of a Whole Number. Zeros at the end of a whole number may or may not be
significant. If a distance is reported as 1600 feet, one assumes two sig figs. Reporting measurements in
scientific notation removes all doubt, since all numbers written in scientific notation are considered
3
Two significant figures
significant.
1 600 feet
1.6 x10 feet
3
Three significant figures
1 600 feet
1.60 x 10 feet
3
Four significant figures
1 600 feet
1.600 x 10 feet
Sample Problem #1: Underline the significant figures in the following numbers.
(a) 0.0420 cm
answer = 0.0420 cm
(e) 2 403 ft.
answer = 2 403 ft.
(b) 5.320 in.
answer = 5.320 in.
(f) 80.5300 m
answer = 80.5300 m
(c) 10 lb.
answer = 10 lb.
(g) 200. g
answer = 200 g
3
3
(d) 0.020 ml
answer = 0.020 ml
(h) 2.4 x 10 kg
answer = 2.4 x 10 kg
Rounding Off Numbers
In reporting a numerical answer, one needs to know how to "round off" a number to include the correct
number of significant figures. Even in a series of operations leading to the final answer, one must "round
off" numbers. The rules are well accepted rules:
1. If the figure to be dropped is less than 5, simply eliminate it.
2. If the figure to be dropped is greater than 5, eliminate it and raise the preceding figure by 1.
3. If the figure is 5, followed by nonzero digits, raise the preceding figure by 1
4. If the figure is 5, not followed by nonzero digit(s), and preceded by an odd digit, raise the
preceding digit by one
5. If the figure is 5, not followed by nonzero digit(s), and the preceding significant digit is even,
the preceding digit remains unchanged
Sample Problem #2: Round off the following to three significant figures.
(a) 3.478 m
answer = 3.48 m
(c) 5.333 g
answer = 5.33 g
(b) 4.8055 cm
answer = 4.81 cm
(d) 7.999 in.
answer = 8.00 in.
Multiplication
In multiplying two numbers, when you wish to determine the number of significant figures you should
have in your answer (the product), you should inspect the numbers multiplied and find which has the least
number of significant figures. This is the number of significant figures you should have in your answer (the
product). Thus the answer to 0.024 x 1244 would be rounded off to contain two significant figures since
the factor with the lesser number of significant figures (0.024) has only two such figures.
Sample Problem #3: Find the area of a rectangle 2.1 cm by 3.24 cm.
2
Solution: Area = 2.1 cm x 3.24 cm = 6.804 cm
We note that 2.1 contains two significant figures, while 3.24 contains three significant figures. Our product
2
should contain no more than two significant figures. Therefore, our answer would be recorded as 6.8 cm
Sample Problem #4: Find the volume of a rectangular solid 10.2 cm x 8.24 cm x 1.8 cm
3
Solution: Volume = 10.2 cm x 8.24 cm x 1.8 cm = 151.2864 cm
We observe that the factor having the least number of significant figures is 1.8 cm. It contains two
3
significant figures. Therefore, the answer is rounded off to 150 cm .
Division
In dividing two numbers, the answer (quotient) should contain the same number of significant figures as
are contained in the number (divisor or dividend) with the least number of significant figures. Thus the
answer to 528 ÷ 0.14 would be rounded off to contain two significant figures. The answer to 0.340 ÷ 3242
would be rounded off to contain three significant figures.
Sample Problem #5: Calculate 20.45 ÷ 2.4
Solution: 20.45 ÷ 2.4 = 8.52083
We note that the 2.4 has fewer significant figures than the 20.45. It has only two significant figures.
Therefore, our answer should have no more than two significant figures and should be reported as 8.5.
Addition and Subtraction
In adding (or subtracting), set down the numbers, being sure to keep like decimal places under each
other, and add (or subtract). Next, note which column contains the first estimated figure. This column
determines the last decimal place of the answer. After the answer is obtained, it should be rounded off in
this column. In other words, round to the least number of decimal places in you data.
Sample Problem #6: Add 42.56 g + 39.460 g + 4.1g
Solution:
42.56 g
39.460 g
4.1 g
Sum =
86.120 g
Since the number 4.1 only extends to the first decimal place, the answer must be rounded to the first
decimal place, yielding the answer 86.1 g.
Average Readings
The average of a number of successive readings will have the same number of decimal places that are in
their sum.
Sample Problem #7: A graduated cylinder was weighed three times and the recorded weighings
were 12.523 g, 12.497 g, 12.515 g. Calculate the average weight.
Solution:
12.523 g
12.497 g
12.515 g
37.535 g
In order to find the average, the sum is divided by 3 to give an answer of 12.51167. Since each number
extends to three decimal places, the final answer is rounded to three decimal places, yielding a final
answer of 12.512 g. Notice that the divisor of 3 does not effect the rounding of the final answer. This is
because 3 is an exact number - known to an infinite number of decimal places.
Name_______________________________________
Give the number of significant figures in each of the following:
____
____
____
____
402 m
0.00420 g
5.1 x 104 kg
78 323.01 g
____ 34.20 lbs
____ 3 200 liters
____ 0.48 m
____ 1.10 torr
____
____
____
____
0.03 sec
0.0300 ft.
1 400.0 m
760 mm Hg
Multiply each of the following, observing significant figure rules:
17 m x 324 m = ________________
1.7 mm x 4 294 mm = __________________
0.005 in x 8 888 in = _____________
0.050 m x 102 m = ____________________
0.424 in x .090 in = ______________
324 000 cm x 12.00 cm = _______________
Divide each of the following, observing significant figure rules:
23.4 m ÷ 0.50 sec = ______________ 12 miles ÷ 3.20 hours = ________________
0.960 g ÷ 1.51 moles = ____________ 1 200 m ÷ 12.12 sec = __________________
Add each of the following, observing significant figure rules:
3.40 m
0.022 m
0.5 m
102.45 g
2.44 g
1.9999 g
102. cm
3.14 cm
5.9 cm
Subtract each of the following, observing signigicant figure rules:
42.306 m
1.22 m
14.33 g
3.468 g
234.1 cm
62.04 cm
Work each of the following problems, observing significant figure rules:
Three determinations were made of the percentage of oxygen in mercuric oxide. The
results were 7.40%, 7.43%, and 7.35%. What was the average percentage?
A rectangular solid measures 13.4 cm x 11.0 cm x 2.2 cm. Calculate the volume of the
solid.
If the density of mercury is 13.6 g/ml, what is the mass in grams of 3426 ml of the
liquid?
A copper cylinder, 12.0 cm in radius, is 44.0 cm long. If the density of copper is
8.90 g/cm3, calculate the mass in grams of the cylinder. (assume pi = 3.14)
Scientific(Notation:((Making(Sense(of(the(Mammoth(and(the(Miniscule((section)1.8))
)
Chemistry)problems)often)involve)calculations.))When)the)numbers)are)“reasonably<sized”,)such)as)1,)12,)0.745,)and)such,)
then)working)with)them)is)quite)easy.))Unfortunately,)many)measurements)are)not)so)“reasonably<sized”,)and)must)be)
written)(and)worked)with))in)a)way)that)simplifies)the)expression)of)very)large)and)very)small)numbers.)
)
The)preferred)method)of)writing)very)small)or)very)large)quantities)uses)scientific(notation—a)sort)of)mathematical)
shorthand)that)simplifies)calculations)and)reduces)errors.))As)examples,)consider)the)following:)
)
)
)
a.)
The)distance)between)oxygen)atoms)in)a))
)
)
molecule)of)O2)is)around)0.000000000120)m.)
)
)
b.)
Light)travels)through)a)vacuum)at)about)
)
)
9500000000000)kilometers)per)year.)
)
)
c.)
18)grams)of)water)comprises)approximately)
)
)
)602000000000000000000000)molecules.)
)
)
Writing)these)number)is)difficult)enough)(counting)the)correct)number)of)zeroes)is)tricky)—imagine)having)to)multiply)two)of)
the)numbers)together?))[One)might)wonder)how)many)oxygen<oxygen)bonds)it)takes)to)cover)the)distance)that)light)travels)
in)a)year.]))How)would)one)keep)track)of)the)decimal)point)and)all)of)those)zeroes?)
)
Any)number,)no)matter)how)large)or)small,)can)be)expressed)in)scientific(notation.))A)number)in)scientific)notation)has)
two)parts.))The)first)part)(called)the)mantissa))is)a)number)between)1)and)10.))The)second)part)is)a)power)of)ten.)
)
)
Examples:)
5.46)x)108)
)
9.81)x)104))
)
3.27)x)10–7)))
))))))
)))))))mantissa))
)
)
)
What)does)108)mean?))It)means)10)multiplied)by)itself)8)times)(like)so:))10)x)10)x)10)x)10)x)10)x)10)x)10)x)10).))One)could)
write)100)000)000)instead,)but)might)easily)lose)some)digits)along)the)way—not)a)good)thing.))Instead,)we)use)“108”)to)
mean)“one)followed)by)eight)zeroes”.)
)
The)first)example,)then,)equals)5.46)x)100)000)000,)or))
546)000)000.)
)
An(easier(way(to(convert(from(scientific(notation(to(decimal(notation(is(to(move(the(decimal(point.))In)the)
second)example,)the)value)is)given)as)9.81)x)104.))To)convert)to)decimal)notation,)simply)move)the)decimal)point)in)the)
positive)(right))direction)four)places.))[The)decimal)moves)the)number)of)places)equal)to)the)exponent.]))We)then)get)98100)
as)our)answer)[move)the)decimal)four)places)right:)9)8)1)0)0].)
)
Move)the)decimal)point)in)the)negative)(left))direction)if)the)exponent)is)negative.))The)third)example)is)written)0.000)000)
327)in)decimal)notation.))[move)the)decimal)seven)places)left:)0.0)0)0)0)0)0)3)2)7])
)
Converting)to)scientific)notation)is)the)opposite)of)converting)from)scientific)notation.))Let’s)look)at)some)earlier)examples:)
)
)
)
a.)
The)distance)between)oxygen)atoms)in)a))
)
)
molecule)of)O2)is)around)0.000000000120)m.)
)
)
b.)
Light)travels)through)a)vacuum)at)about)
)
)
9500000000000)kilometers)per)year.)
)
)
c.)
18)grams)of)water)comprises)approximately)
)
)
)602000000000000000000000)molecules.)
)
)
)
In)each)case,)we)must)move)the)decimal)point)until)there)is)a)single,)nonzero))digit)to)the)left)of)the)decimal.))No)zeroes)
should)remain)in)front)of)the)decimal.))If)there)were)no)decimal)point)present)in)the)first)place)(i.e.)if)a)decimal)point)must)
be)added,)as)is)the)case)in)examples)b)and)c),)zeroes)at)the)end)of)the)value)will)disappear.))If)the)decimal)point)was)
already)present)(as)in)example)a),)zeroes)at)the)end)of)the)value)must)be)retained.))
)
•)
If)the)decimal(point(moves(right,)the)power(of(ten((
(
decreases.((If)the)decimal(point(moves(left,)the))
(
power(of(ten(increases.)
)
Example)a:
0.000)000)000)120)meters)))
)
The)decimal)moves)right(ten)places,)so)the)power)of)ten))
decreases)by)ten.))Since)no)power)of)ten)was)initially)expressed,)we)simply)add)“x)10–10”)at)the)end)of)the)number.)
)
000)000)000)120)=)1.20)x)10–10)meters)between)oxygen))
atoms)in)a)molecule)of)O2.)
)
Example)b:
9)500)000)000)000)000)m/yr))) )
The)decimal)moves)left(fifteen)places,)so)the)power)of)ten))
increases)by(fifteen.)
)
9)500)000)000)000)000)=)9.5)x)1015)m)traveled)by)light)in)a))
year)(one)light<year).)
)
Example)c:
602)000)000)000)000)000)000)000)molecules)
The)decimal)moves)left(23)places,)so)the)power)of)ten)increases(by)23.)
)
602)000)000)000)000)000)000)000))=)6.02)x)1023)molecules)in)a)mole)(18)g))of)water.)
)
Note:)))
a(number(less(than(one(will(always(have(a(negative(exponent.((A(number(more(than(ten(has(a(
positive(exponent.))A)number)between)one)and)ten)has)a)zero)exponent))2.78)=)2.78)x)100,)since)the)
decimal)moves)zero)places.))And)100)equals…1!)
)
Calculation(using(scientific(notation(
)
Converting)numbers)to)scientific)notation)makes)large)and)small)numbers)easy)to)work)with.))[It)is)even)possible)to)write)
numbers)which)are)greater)than)the)total)of)all)of)the)atoms)in)the)universe,)such)as)109283748.]))The)major)advantage,)
however,)is)that)calculations)are)simplified)when)scientific)notation)is)used.)
)
)
Imagine)solving)a)problem)such)as:)
)
d.)
How)many)oxygen<oxygen)bonds)would)cover)the)distance)that)light)travels)in)a)year?)
)
without)using)scientific)notation.))It)would)be)a)difficult)task)indeed.))With)scientific)notation,)however,)it)is)quite)simple)to)
answer.)
)
For)now,)let’s)look)at)a)more)common)example:)
)
)
e.)
Multiply)2.1)×)10)4)by)3.6)×)10)6)
)
This)problem)can)be)rewritten)as)(2.1)×)104))•)(3.6)×)106),)which)is)equal)to)(2.1)•)3.6))•)(104)•)106).))Our)strategy,)then,)is)
to)multiply)the)mantissas)(2.1)•)3.6))and)the)exponents))
(104)•)106))separately,)then)combine.)
)
)
)
)
)
)
)
2.1)•)3.6)=)7.56g)(104)•)106))=)1)000)•)1)000)000))
=)10)000)000)000)=)1010.)
The)answer)is)thus)7.56(×(10(10.)
(
It(is(not(necessary((or(helpful)(to(convert(the(exponents(to(decimal(numbers.((To(multiply(powers(of(
ten,(simply(add(the(exponents.))(104)•)106))=)10(4+6))=)1010.)
)
Another)example:)
)
)
f.)
(6.4)×)10)7))•)(5.23)×)10)–3))=)
)
(6.4)•)5.23))•)(107)•)10–3))=)33.472)x)10(7+(–3))))
=)33.472(×(10(4.)
)
Unfortunately,)our)mantissa)is)too)large)(it)must)be)between)1)and)10).))How)do)we)fix)this?)
)
Easily.))Move)the)decimal)point)one)space)left.))Since)the)decimal)moves)left,)the)exponent)increases:)
)
)
33.472)x)104)=)3.3472(×(10(5.)
)
)
Here’s)another)look:)
)
33)×)104)=)33)•)10)000)=)330)000.)))
))
)
330)000)can)be)rewritten)thus:))
))
)
330)000)=)3.3)×)105.)
)
)
Division)is)also)easy:)
)
)
g.)
(8.92)×)10)6))
)
)
(1.57)×)10)4)))
)
Rearrange:)
(8.92))•)(106))=)5.68)×)10(6<4))=)5.68)×)102.)
)
)
(1.57)) (104))
)
To(divide(powers(of(ten,(the(exponents(are(subtracted((bottom(from(top).)
)
•(
Summary:((when(multiplying,(add(powers(of(ten.(((
(
(
(
(
When(dividing,(subtract(powers(of(ten.(
))
Let)us)close)by)examining)our)“complex”)problem:)
)
d.)
How)many)oxygen<oxygen)bonds)would)cover)the)distance)that)light)travels)in)a)year?)
)
The)length)of)the)O)–)O)bond)is)1.20)×)10–10)meters,)and)light)travels)9.5)×)1015)m)in)a)year.)
)
)
)
)
We)simply)divide:)
))))))9.5)×)1015)m)
)))),))
)
)
)
)))))1.20)×)10–10)m)/)bond)
)
and)obtain)(9.5)/)1.2))•)(10(15)–)(–10))))=)7.9)×)1025)bonds.)
Measurement(and(Precision(Practice(#1—Scientific(Notation(
)
1.)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
2.)
)
)
)
)
)
)
)
)
)
)
)
)
)
3.)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Convert)each)of)the)following)to)scientific)notation:)
a.)
1240000)
)
)
)
)
)
b.)
0.000000000210)
c.)
0.000784)
)
)
)
)
)
d.)
2280)
)
e.)
136.78)×)106)
)
)
)
)
)
f.)
1.26)×)10–7)
)
Convert)each)of)the)following)to)decimal)notation:)
a.)
1.32)×)105)
)
)
)
)
)
b.)
2.60)×)10–3)
c.)
3.4)×)10–2)
)
)
)
)
)
d.)
9.5123)×)106)
Perform)the)following)calculations.))Answers)should)be)in)correct)scientific)notation)form.)
a.)
(3.1)×)103)(1.86)×)102)) )
)
)
)
b.)
(9.66)×)104)(7.463)×)10–3))
c.)
(1.11)×)1023))/)(5.68)×)1020))
)
)
)
d.)
(5.5)×)103))/)(3)×)10–8))
)
e.)
)
(7.65)×)10–5)(2.222)×)103))
)))))))))(5.90)×)10–2))
4.) Addition)and)subtraction)using)scientific)notation)requires)that)the)two)values)to)be)combined)have)the)same)power)
of)ten.))If)the)powers)of)ten)do)not)match,)the)smaller)value)should)be)converted)so)that)its)power)of)ten)is)the)
same)as)that)of)the)larger)valueg)the)conversion)is)accomplished)by)moving)the)decimal)the)appropriate)number)of)
steps,)in)the)correct)direction,)so)that)the)powers)of)ten)are)equal.)
)
)
)
)
a.)
3.87)×)106)+)4.99)×)105) )
)
b.)
6.81)×)10–5)–)1.11)×)10–3))
)
)
)
)
)
)
)
)
)
c.)
(5.0)×)10–3)+)5.44)×)10–3))
)
)
)
5.90)×)10–2)
)
)
)
)
)
)
5.) Assuming)that)the)average)human)body)is)made)of)one)hundred)trillion)cells,)how)many)human)bodies)would)be)
required)to)contain)one)mole)of)(6.02)×)1023))cells?)
Molar(Mass(((sections)3.1)–)3.3)(
)
Most)stable)elements)have)multiple)natural)isotopes.))As)isotopes)differ)in)their)atomic)mass)(by)virtue)of)the)differing)
number)of)neutrons)in)their)nuclei),)we)should)not)expect)the)average)mass)of)an)element’s)atoms)to)be)a)whole<number)
value.))The)average(atomic(mass)of)a)stable)element)is)a)decimal)value)reflecting)the)abundance)of)each)naturally<
occurring)isotope,)and)is)the)weighted)average)of)all)atoms)of)that)element.))For)example,)neon)has)three)natural)isotopes:))
neon<20,)with)atomic)mass)19.99)amug)neon<21,)with)mass)20.99)amug)and)neon<22,)massing)21.99)amu.))[The)disparity)
between)the)mass)number)and)the)actual)atomic)mass)of)the)isotope)is)very)slight,)and)is)partially)related)to)the)definition)of)
an)atomic(mass(unit,)which)is)one<twelfth)of)the)mass)of)the)carbon<12)nucleus.]))If)all)three)isotopes)were)in)equal)
abundance,)we)would)expect)the)average)atomic)mass)of)neon)to)be)20.99)amu.))The)true)average)mass,)though,)is)20.18)
amu,)which)should)suggest)that)the)lightest)isotope)is)the)most)common.))In)fact,)90.92%)of)natural)neon)is)neon<20,)and)
8.82%)is)neon<22.))Neon<21)is)the)rarest,)accounting)for)only)0.26%)of)natural)neon.)
)
The)average)atomic)mass)should)never)be)used)as)the)mass)of)a)single)atom.))No)single)neon)atom)has)a)mass)of)20.18)
amu.))For)single)atoms,)we)must)use)the)mass)number)(protons)+)neutrons)g)the)average)atomic)mass)is)only)used)for)large)
numbers)of)atoms.)
)
In)most)instances,)however,)the)number)of)atoms)in)our)sample)will)be)very)large,)and)the)assumption)that)each)atom)can)
be)represented)with)the)average)mass)becomes)reasonable.))An)atomic)mass)unit)is)1.6605)×)10–24)gg))a)microgram)(1)µgg)
one)millionth)of)a)gram))of)neon,)then,)would)comprise)2.98)x)1016)atoms)at)20.18)amu)each:)
)
)
1)×)10–6)g)Ne) •))))))))))))))1)amu))))))))))))•)
1)atom)Ne)
)=)
2.98)×)1016)atoms.))
–24
)
)
)
)))))))))1.6605)×)10 )g) )
20.18)amu))))))))))
)
A)sample)of)20.18)grams)of)neon)would)contain)20.18)million)times)as)many)atoms—6.022)×)1023)of)them.))Of)course,)this)
could)all)seem)to)be)an)exercise)in)computation,)but)we)can)attempt)to)establish)a)pattern)by)using)a)different)element)in)a)
similar)calculation.))9.012)amu)is)the)mass)of)a)single)beryllium)atom.))If)our)sample)had)9.012)g)of)Be,)it)would)contain)
)
)
9.012)g)Be)))))•))))))))))1)amu) )))))
•)))))1)atom)Be))))=)
6.022)×)1023)atoms.)
)))
–24
)
)
)
))))1.6605)×)10 )g)
))))))9.012)amu)
)
It)seems)that)if)we)use)a)mass)in)grams)equal)to)the)average)atomic)mass)of)that)element,)we)always)obtain)the)same)very)
large)number)known)as)Avogadro’s(Number,)or)NA(.))The)apparent)coincidence)masks)the)true)meaning)of)the)fact—if)one)
knows)the)mass)and)chemical)formula)of)a)sample,)one)can)determine)the)number)of)atoms)in)the)sample.))Since)elements)
and)compounds)react)in)simple)atom/molecule)ratios,)the)mass)of)one)substance)can)be)used)to)determine)the)mass)of)
other)substances)in)the)reaction)needed)for)complete)reaction.)
)
The)drawback)of)Avogadro’s)Number)is)that)many)students)believe)NA))to)be)important)in)calculations.))The)specific)number)
is)usually)an)impediment)to)understanding,)and)we)are)far)better)off)using)an)abbreviation)for)6.022)×)1023—a)value)defined)
as)one(mole.))1)mole)of)neon)atoms)is)equal)to)6.022)×)1023)neon)atoms,)but)is)much)easier)to)write)and)to)use)in)
calculations.))Therefore,)we)will)use)mole)quantities,)rather)than)atom)quantities,)in)measurements)and)calculations.)
)
The)mass)of)a)mole)of)an)element’s)atoms,)called)the)molar(mass)of)that)element,)is)simply)equal)to)the)average(atomic(
mass)of)that)element)expressed(in(grams.))One)mole)of)neon)has)a)mass)of)20.18)gg)one)mole)of)beryllium)has)a)mass)of)
9.012)g.))Conversely,)we)could)determine)the)number)of)moles)(and,)indirectly,)the)number)of)atoms))in)a)specific)mass)of)
an)element)by)using)a)simple)conversion.))We)might,)for)example,)have)a)sample)of)pure)iron)massing)45.00)g.))Since)55.85)
g)of)iron)are)equal)to)one)mole)of)iron,))
)
)
)
45.00)g)Fe)))))•) )))))1)mole)Fe) )))=)
))0.8057)mol)Fe.)
)
)
)
)
)))))55.85)g)Fe)
)))
Molar)mass)can)also)be)determined)for)compounds.))The)chemical)formula)indicates)a)constant)ratio)of)elements)in)the)
substance)and)the)number)of)atoms)of)each)element)in)one)formula)unit.))Iron(III))oxide)has)the)formula)Fe2O3.))A)single)
formula)unit)of)Fe2O3,)were)it)possible)to)isolate)such)a)thing,)would)contain)two)iron)and)three)oxygen)atoms.))A)dozen)
formula)units)of)Fe2O3)would)contain)2)dozen)Fe)and)3)dozen)O)atoms.))We)could)choose)any)multiple)we)wished,)but)if)we)
use)one)mole,)and)recall)that)a)mole)is)merely)a)large)number,)each)mole)of)Fe2O3)would)contain)2)mol)Fe)and)3)mol)O)
atoms.))[The)amounts)of)iron)and)oxygen)in)the)sample)must)remain)in)the)same)proportion,)and)each)one)unit)of)Fe2O3,)no)
matter)what)size)the)unit)(dozen,)thousand,)mole,)etc.))must)contain)two)units)of)Fe)and)three)of)O.])
)
It)is)therefore)a)simple)matter)to)calculate)the)formula(massg)we)merely)combine)the)average)atomic)masses,)expressed)in)
grams,)of)all)atoms)in)the)formula.))One)mol)Fe2O3)has)2)mol)Fe)and))
3)mol)O,)for)a)total)mass)of)(2)∙)55.85))+)(3)∙)16.00)))
)
=)159.70)g)Fe)))(also)written)as)159.70)g)mol–1))
))))
))mol)
)
)
Measurement(and(Precision(Practice(#2—Formula(Mass(
)
1.( For)each)of)the)following)substances,)find)the)molar)mass)(the)mass)of)1)mol)of)the)substance).))Round)masses)to)the)
smallest)number)of)decimals)used.))[Example:))1.04)(2)decimals))+)6.5459)(4)decimals))=)7.59)(2)decimals).](
)
)
Example:))The)molar)mass)of)acetone,)(CH3)2CO,)is)given)by)adding)the)mass)of)each)atom:)
)
)
3)C)=)) 3)•)12.011)=) 36.033) )
!)
3)decimals)
)
)
6)H=) 6)•)1.0079)=)) ))6.0474)
!)
4)decimals)
)
1)O=) 1)•15.999)=)
15.9994))))
!)
4)decimals)
)
)
)
)
)
)
)
)
58.0798(
(((round)to)3)decimals)(smallest)number)of)decimals)in)addends))
)
)
)
)
)
)
)
)
)
)
)
)
)
)))
)
))))
|)
)
)
)
)
)
)
1)mol)(CH3)2CO)=)58.080)g)(CH3)2CO)) ))!)
))))|)
)
)
)
a.)
Mo)
)
)
)
)
)
)
)
b.)
palladium)
)
)
)
)
)
)
c.)
iodine) )
)
)
)
)
)
)
d.)
CCl2O)
)
)
)
)
)
e.)
NH4VO3))
)
)
)
)
)
)
f.)
lanthanum(III))sulfide)
)
)
)
)
)
g.)
CH3(CH2)16COOH)
)
)
)
)
)
h.)
sodium)benzoate)
)
)
)
)
)
)
2.( Iridium)has)two)naturally<occurring)isotopes—iridium<191)and)iridium<193.))Assuming)that)the)atomic)masses)of)the)
isotopes)exactly)match)their)mass)numbers,)what)percentage)of)natural)iridium)must)be)iridium<191?))[All)work)must)be)
shown)for)credit.](
(
(
(
(
(
(
)
)
)
3.)
)
Find)the)number)of)moles)represented)by)each)of)the)following)mass)measurements:)
a.)
)
)
)
)
)
577.6)g)CCl4)
)
b.)
)
)
7.1)g)NH2CSNH2)
)
)
)
c.)
7383)g)chromium(III))hydrogen)carbonate)
)
)
)
)
)
)
4.)
Find)the)number)of)grams)in)each)of)the)following)mole)quantities:)
)
)
a.)
0.0827)mol)YP)
)
)
)
)
)
)
)
b.)
1.20)mol)XeF4)
)
)
)
)
)
)
)
c.)
410)mol)hydrogen)
)
)
)
)
)
)
5.)
Zinc)has)five)naturally<occurring,)stable)isotopes.))From)the)information)given)in)the)table)below,)determine))
)
the)average)atomic)mass)of)zinc)(which)may)not)exactly)match)the)value)given)in)your)reference)materials).)
)
)))))))Isotope) ))))))Mass)(amu)))
Percent)abundance)
)
)
)
)
64
Zn)
))))63.92)
48.6)
)))))))))))))66
Zn)))))))))))))))))65.93))))))))))))))))))))))))27.9)
)))))))))))))67
Zn)))))))))))))))))66.93))))))))))))))))))))))))))4.1)
)))))))))))))68
Zn)))))))))))))))))67.92)))))))))))))))))))))))))18.8)
)))))))))))))70
Zn)))))))))))))))))69.93)))))))))))))))))))))))))))0.6)
)
)
)
Names&and&Formulae&of&Ionic&Compounds&
!(sections!2.6!and!2.7)!
!
The!Stock!system!is!used!for!naming!and!writing!the!formulae!of!ionic!compounds.!!Within!the!Stock!system,!both!the!
formula!and!name!of!an!ionic!compound!consist!of!two!parts—the!cation!(positive!ion)!followed!by!the!anion!(negative!ion).!!
Some!ionic!formulae!consist!of!one!copy!of!each!ion,!while!others!require!multiple!copies!of!one!or!both!ions!in!order!to!
produce!a!neutral!formula.!!Regardless,!the!chemical!name!does!not!indicate!the!number!of!copies!of!the!ions—only!the!
names!of!the!ions!that!make!up!the!formula.!!Therefore,!NaCl,!which!is!made!of!sodium!and!chloride!ions,!is!named!
sodium!chloride.!!CaI2!is!called!calcium&iodideE!the!presence!of!two!iodide!ions!in!the!formula!is!not!reflected!in!the!
name.!![I2!is!also!the!formula!of!the!iodine!molecule,!but!I2!is!known!as!“iodine”!only!when!uncombined!with!other!elements!
(i.e.!only!when!a!pure!element).!!I2!in!a!compound,!such!as!CaI2,!represents!two!copies!of!the!iodide!(I–)!ion.]!
!
One!can!determine!from!a!chemical!formula!which!ions!are!present,!and!thus!the!name!of!the!compound.!!Naming!NaCl!and!
CaI2!is!simple,!as!the!two!ions!in!each!formula!are!easy!to!recognize.!!Even!when!more!than!two!elements!are!represented!
in!the!formula,!the!Stock!system!is!simple!to!apply:!!since!the!name!and!the!formula!are!composed!of!the!cation!followed!by!
the!anion,!one!merely!needs!to!separate!the!formula!into!the!two!parts.!!!
!
The!“dividing!line”!between!cation!and!anion!is!almost!always!after!the!first!element!in!the!formula.!!Most!cations!are!
monatomic—made!of!a!single!atom.!!The!only!common!exception!is!the!ammonium!ion,!NH4+.!!Therefore,!unless!the!
formula!begins!with!NH4,!the!first!element!in!the!formula!represents!the!cation,!and!the!rest!of!the!formula!represents!the!
anion.!!Some!anions!are!monatomic,!but!most!are!polyatomic—consisting!of!multiple!atoms!held!together!by!covalent!
bonds.!![Even!though!the!individual!atoms!of!a!polyatomic!ion!are!connected!with!covalent!bonds,!the!entire!species!is!an!
ion,!as!it!has!additional!electrons!that!lend!the!entire!polyatomic!ion!group!a!negative!charge.]!!Common!polyatomic!anions!
are!nitrate!(NO3–),!hydroxide!(OH–),!sulfate!(SO42–),!and!carbonate!(CO32–).!!Naming!compounds!containing!polyatomic!ions!
is!no!different!from!naming!those!with!monatomic!ionsE!the!Stock!system!merely!requires!the!identification!of!the!ions!in!the!
formula.!!KNO3!is!potassium&nitrateE!the!first!ion!element!in!the!formula!(K+)!is!the!cation,!and!the!rest!(NO3–)!must!be!
the!anion.!!Sr3(PO4)2!is!strontium&phosphate.!![Again,!the!presence!of!multiple!copies!of!the!ions!has!no!bearing!on!the!
name.]!!(NH4)2SO4!is!ammonium&sulfate.!![This!is!the!“exceptional!case”,!in!which!the!dividing!line!between!the!positive!
and!negative!pieces!of!the!formula!is!after!NH4!rather!than!immediately!after!the!first!element.]!
!
Some!elements!form!only!one!type!of!ion.!!Sodium,!calcium,!chlorine,!and!iodine!are!examples.!!Others,!particularly!those!of!
the!d!Zblock!and!lower!p!Zblock,!can!make!multiple!ions.!!In!these!cases,!we!need!a!means!to!distinguish!between!the!ions.!!
Iron,!for!example,!can!form!a!2+!or!a!3+!ion.!!The!Stock!system!uses!Roman!numerals!to!specify!which!of!the!ions!is!
present!in!the!formula.!!Fe(NO3)2!and!Fe(NO3)3!are!two!different!nitrates!of!iron,!with!significantly!different!properties.!!
Neither!should!be!referred!to!as!“iron!nitrate”,!a!name!which!is!ambiguous.!!Instead,!Fe(NO3)2!is!known!as!iron(II)!nitrate,!
indicating!the!presence!of!Fe2+!in!the!compound,!while!Fe(NO3)3!is!iron(III)!nitrate.!!!
!
To!generate!the!names!of!such!compounds!from!the!formulae,!we!use!the!anion!as!a!clue.!!As!we!know!nitrate!to!be!a!1–!
ion,!two!copies!of!it!in!a!formula!such!as!Fe(NO3)2!have!a!collective!2–!charge.!!Chemical!compounds!are!neutral,!so!the!
total!positive!charge!must!be!2+,!and!the!single!copy!of!the!iron!ion!in!the!formula!must!have!a!2+!charge.!!Fe(NO3)2!is!
therefore!iron(II)&nitrate.!!Fe!in!Fe(NO3)3!must!have!a!3+!charge!to!counterbalance!the!3–!charge!of!the!three!nitrate!
ions,!and!Fe(NO3)3!is!iron(III)&nitrate.!
!
Note!that!the!Roman!numeral!in!these!names!does!not!refer!to!the!number!of!copies!of!the!ions!present—it!refers!only!to!
the!charge!of!the!cation,!and!is!necessary!only!for!elements!with!multiple!possible!ions.!!Sodium,!calcium,!ammonium,!and!
other!species!with!only!one!possible!ion!never!require!Roman!numerals!in!their!names.!!Iron,!nickel,!lead,!and!many!others!
always!do.!
!
Writing!an!ionic!formula!from!the!chemical!name!should!be!a!simple!matter,!since!the!name!describes!the!ions!present!in!the!
formula.!!It!then!suffices!to!use!the!appropriate!number!of!copies!of!each!ion!to!make!a!neutral!formula.!!For!example,!
magnesium&sulfite,!made!of!Mg2+!and!SO32–!ions,!requires!one!copy!of!each!ion!to!make!a!neutral!formula,!which!is!
written!MgSO3.!&Ammonium&carbonate,!consisting!of!NH4+!and!CO32–!ions,!requires!two!copies!of!the!cation!to!balance!
the!charge!of!the!anion.!!We!must!place!a!subscript!2!after!the!ammonium!ion’s!formula,!and!must!enclose!ammonium’s!
formula!in!parentheses!to!indicate!that!two!copies!of!the!entire!ion!are!in!the!formula,!which!is!(NH4)2CO3.!
!
&
&
&
&
&
Common&Ions&and&their&Oxidation&States&(Valences)&
&
&
!
!
!
!
!
1+!
Ammonium!
NH4+!
1–!
Acetate!
C2H3O2–!!(or!CH3COO–)!
+!
!
!
Copper(I)!
Cu
Bromide!
!
! Br–!
+!
!
!
Hydrogen!
H
Chlorate!
!
! ClO3–!
+!
!
Lithium!
Li
!
Chloride!
!
! Cl–!
+
!
!
Potassium!!
K !
!
Chlorite!
!
! ClO2–! !
!
+
!
!
!
Silver!
Ag !
Cyanide!
!
! CN–!
!
!
Sodium!
Na+!
!
Dihydrogen!Phosphate! H2PO4–! !
JJJJJJJ
!
!
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
Fluoride!
!
! F –!
!
2+!
Barium!
Ba2+!
!
Hydrogen!Carbonate! ! HCO3–! !
!
2+
!
!
Cadmium!
Cd !
!
Hydrogen!Sulfate!
! HSO4–!
!
!
!
Calcium!
Ca2+!
!
Hydroxide!
!
! OH–!
2+
!
!
!
Chromium(II)!
Cr !
!
Hypochlorite! !
! ClO–! !
!
2+
!
!
Cobalt(II)!
Co !
!
Iodide!
!
! I–!
!
!
!
Copper(II)!
Cu2+!
!
Iodate!
!
! IO3–!
2+
!
!
!
Iron(II)!
Fe !
!
Nitrate!
!
! NO3–! !
!
2+
!
!
Lead(II)!
Pb !
!
Nitrite!
!
! NO2–! !
!
!
!
Magnesium!
Mg2+!
!
Perchlorate! !
! ClO4–! !
!
!
!
Manganese(II)!
Mn2+!
!
Permanganate!
! MnO4–! !
!
!
!
Mercury(II)!
Hg2+!
!
Thiocyanate! !
! SCN–! !
!
!
!
Nickel(II)!
Ni2+!
!
!!
!
!
!
Strontium!
Sr2+!
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ!
!
!
Tin(II)!
Sn2+!
2–!
Borate!
!
! B4O72–!
2+
!
!
!
Zinc!
Zn !
!
Carbonate! !
! CO32–!
!
!
–JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ& &
Chromate!
!
! CrO42–! !
3+
&
3+!
Aluminum!
Al &
&
Dichromate! !
! Cr2O72–!
3+
!
!
Antimony(III)!
Sb !
!
Hydrogen!Phosphate!!!!!HPO42–!
3+
!
!
Arsenic(III)!
As !
!
Oxalate!
!
! C2O42–!
3+
!
!
Bismuth(III)!
Bi !
!
Oxide!
!
! O2–!
3+!
!
!
!
Chromium(III)!
Cr
Silicate!!
!
! SiO32–!
3+
!
!
Cobalt(III)!
Co !
!
Sulfate!
!
! SO42–!
3+
!
!
Iron(III)!
Fe !
!
Sulfide!
!
! S2–! !
!
!
3+
!
!
Titanium(III)!
Ti !
!
Sulfite!
!
! SO32–! !
!
!
!
!
Thiosulfate!
!
!
S2O32–! ! JJJJJJJJJJJJJJJJJJJJ
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ& JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ&
!
4+!
Lead(IV)!
Pb4+!
3–!
Arsenate!
!
! AsO43–!
4+
!
!
Manganese(IV)!
Mn !
!
Nitride!
!
! N3–! !
4+
!
!
Tin(IV)!
Sn !
!
Phosphate! !
! PO43–!
4+
!
!
Titanium(IV)!
Ti !
!
Phosphide! !
! P3–!
!
JJJJJJJJ!JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ!
5+&
Arsenic(V)!
As5+!
&
Antimony(V)!
Sb5+!
JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ!
!
Names&and&Formulae&Practice&#1—Ionic&Compounds&
!
!
1.! Write!the!name!of!each!of!the!following!compounds.!
!
!
a.! K3PO4! !
!
!
!
!
!
!
!
!
!
!
!
b.! Pb(NO3)2!
c.! LiBr!!
!
!
!
!
!
!
!
!
!
!
!
d.! BaSO4! !
e.! Hg(H2PO4)2! !
!
!
!
!
!
!
!
!
!
!
f.! MnO2!
!
!
!
!
!
!
g.! CoF3!
!
!
!
!
!
!
!
!
!
!
!
!
h.! H2Se!
j.! NH4NO2!!
!
!
!
!
!
!
!
!
!
!
!
k.! SrI2!
!
!
!
!
!
!
!
!
!
!
!
n.! OsO4!
!
!
m.! Na2Cr2O7!
!
2.! Write!the!formula!of!each!of!the!following!compounds.!
!
!
a.! lithium!nitride! !
!
!
!
!
!
!
!
!
!
b.! zinc!oxide!
c.! titanium(IV)!oxide! !
!
!
!
!
!
!
!
!
d.! potassium!chromate!
e.! iron(III)!hydroxide! !
!
!
!
!
!
!
!
!
f.! aluminum!carbonate!
g.! sodium!hydride! !
!
!
!
!
!
!
!
!
h.! silver!cyanide!
j.! ammonium!perchlorate! !
!
!
!
!
!
!
!
k.! calcium!hypochlorite!
m.! copper(I)!carbonate!!
!
!
!
!
!
!
!
n.! sodium!sulfate! !
!
!
!
!
!
!
!
!
!
!
!
!
Names&and&Formulae&of&Molecular&Compounds&
!(sections!2.6!and!2.7)!
!
Molecular!compounds!consist!of!covalentlyZbonded!atoms,!rather!than!ions.!!The!Stock!system!is!inadequate!for!naming!such!
nonZionic!substances.!!For!simple!molecular!compounds,!in!which!atoms!do!not!always!appear!in!the!simplest!possible!ratios,!
it!is!necessary!to!specify!the!number!of!each!atom!in!the!formula.!!Numerical!prefixes!are!used!to!indicate!the!quantities,!
although!no!prefix!is!necessary!for!the!first!element!only!if!there!is!only!one!atom!of!it!present.!!The!name!of!the!first!
element!in!the!formula!is!unchangedE!the!name!of!the!second!element!is!rewritten!with!the!!
“Zide”!suffix!(e.g.!hydrogen!→!hydrideE!phosphorus!→!phosphideE!oxygen!→!oxide).!!
!
!
!
mono!–!1! !
!
di!–!2! !
!
!
!
tri!–!3! !
!
!
!
!
!
tetra!–!4!! !
!
!
!
penta!–!5! !
!
hexa!–!6! !
!
!
hepta!–!7! !
!
!
!
!
octa!–!8!!
!
!
!
!
nona!–!9! !
!
deca!–!10!
!
N2O4!is!known!as!dinitrogen&tetroxide.!![In!the!United!States,!it!is!customary!to!drop!the!ending!vowel!of!the!prefix!
before!an!element’s!name!that!begins!with!a!vowel,!so!“tetroxide”!is!preferable!to!“tetraoxide”,!although!the!latter!is!
permissible.]!!Cl2O7!is!dichlorine&heptoxide.!!CO!is!carbon&monoxide—the!prefix!can!be!omitted!from!the!first!element,!
since!only!one!atom!is!in!the!formula,!but!can!never!be!omitted!from!the!second!element.!!SF6!is!sulfur&hexafluoride.!!!!
!
Finally,!we!will!address!two!special!case!of!naming—those!of!diatomic!elements!and!acids.!!Most!pure!elements!are!written!
as!monatomic!formulae,!such!as!aluminum!(Al)!and!iron!(Fe).!!Sulfur!can!be!written!either!as!S!or!S8E!the!latter!indicates!the!
eightZ!
membered!ring!in!which!sulfur!atoms!usually!join.!Phosphorus!can!be!rendered!as!P!or!P4E!P4!indicates!the!!
tetrahedral!structure!that!stable!phosphorus!assumes.!!!
&&
&
&S8& &
&
&
&
! !
!
!
!
!
!
!
!
!
!
!
&
&
&
&
&
&
&
&
&
&
&
!
&
&&&P4&
Seven!elements!exist!as!diatomic!molecules,!not!as!monatomic!elements,!and!are!named!as!such.!!These!elements!are!
hydrogen,!nitrogen,!oxygen,!fluorine,!chlorine,!bromine,!and!iodine!(H2,!N2,!O2,!F2,!Cl2,!Br2,!I2).!!These!elements!need!not!
appear!as!pairs!within!compounds.!!For!example,!although!molecular!oxygen!is!diatomic,!only!one!oxygen!atom!appears!in!
each!molecule!of!water!(H2O).!
!
Compounds’!formulae!beginning!with!H!typically!represent!acids,!and!are!named!accordingly.!!HCl,!for!example,!is!typically!
known!as!hydrochloric&acid,!rather!than!“hydrogen!chloride”.!!H2SO4!is!sulfuric&acid.!
Names&and&Formulae&Practice&#2—Covalent&Compounds&
!
!
1.! Write!the!name!of!each!of!the!following!compounds.!
!
!
a.! HNO3! !
!
!
!
!
!
!
!
!
!
!
!
b.! B2O3!
c.! P4S3!
!
!
!
!
!
!
!
!
!
!
!
!
d.! CS2!
!
!
!
!
!
!
!
!
!
!
!
!
f.! H2SO4!
!
!
!
!
!
!
!
!
!
!
!
!
h.! Sr3P2!
!
!
!
!
!
!
!
!
!
!
!
!
k.! IF5!
!
!
!
!
!
!
!
!
!
!
!
!
n.! P4O10!
!
!
e.! N2O!!
!
g.! HF! !
!
j.! TeCl4!
!
m.! S4N4!
!
!
2.! Write!the!formula!of!each!of!the!following!compounds.!
!
!
a.! disilicon!hexabromide!
!
!
!
!
!
!
!
!
b.! xenon!trioxide!
c.! acetic!acid! !
!
!
!
!
!
!
!
!
!
!
!
d.! phosphoric!acid!
e.! boron!trichloride!
!
!
!
!
!
!
!
!
!
f.! tetraiodine!nonoxide!
g.! hydroiodic!acid! !
!
!
!
!
!
!
!
!
!
h.! arsenic!pentafluoride!
j.! gallium! chloride!!
!
!
!
!
!
!
!
!
!
k.! dioxygen!diiodide!
m.! dinitrogen!pentoxide!
!
!
!
!
!
!
!
!
n.! perchloric!acid!
!
!
!
!
!
!
!
!
Balancing&Chemical&Equations!!(section!3.7)!
!
A!description!of!a!chemical!reaction!can!be!written!symbolically!in!the!form!of!a!chemical&equation.!!In!an!equation,!the!
starting!materials!(usually!known!as!“reactants”)!are!written!on!the!left!side!of!the!equation!statement,!and!the!ending!
materials!(“products”)!are!written!on!the!right!side.!!Between!the!two!sides!is!an!arrow!pointing!from!left!to!right,!
indicating!the!direction!in!which!the!reaction!proceeds!(i.e.!from!reactants!to!products).!![A!double!arrow!(⇌)!is!used!to!
indicate!a!reversible!reaction.]!!Chemical!symbols!are!certainly!more!compact!than!a!narrative!description—for!the!reaction!
between!hydrochloric!acid!and!potassium!carbonate,!forming!water,!potassium!chloride,!and!carbon!dioxide,!we!can!write:!
!
!! !
HCl!!!!+!!!K2CO3!!!→!!H2O! !+! KCl!+! !!CO2!
!
to!represent!the!process.!!“Plus!signs”!should!be!interpreted!to!mean!“and”,!rather!than!as!“added”E!the!products!do!not!
recombine,!but!instead!are!separate!(water!and!potassium!chloride!and!carbon!dioxide).!
!
We!should!be!in!the!habit!of!including!state&symbols!along!with!the!chemical!formulaeE!state!symbols!indicate!the!state!of!
matter!of!each!substance.!!The!symbol!(g)!represents!a!gaseous!substanceE!(!)!indicates!a!liquidU&(s)!represents!a!solidE!
and!(aq)!indicates!a!substance!dissolved!in!water!(aqueous&state).!![Although!water!is!a!liquid,!a!substance!dissolved!in!
water!is!not!itself!a!liquid,!but!is!part!of!an!aqueous!solution.]!
!
We!now!rewrite!the!previous!equation!with!state!symbols!included!
!
HCl!(aq)!!+! !!K2CO3!(s)!!!→! !H2O!(!)!!+! KCl!(aq)!+! !!CO2!(g)!
!
and!obtain!a!fuller!description!of!the!reaction.!
!
The!above!equation!for!the!chemical!reaction!of!hydrochloric!acid!and!potassium!carbonate!is!not!entirely!correct,!howeverE!
it!is!not!balanced.!!In!order!to!be!accurate,!an!equation!must!indicate!the!Law&of&Conservation&of&Matter—the!same!
atoms!must!be!present!after!the!reaction!as!before!it,!albeit!in!different!configurations.!!Atoms!cannot!disappear!or!be!
created!during!a!chemical!reaction—they!can!only!be!rearranged.!!All!atoms!must!be!“accounted!for”.!
!
It!is!not!permissible!to!change!subscripts,!or!otherwise!alter!correct!formulae,!in!order!to!balance!an!equation.!![If!a!formula!
is!incorrect,!of!course,!it!is!necessary!to!write!it!correctly!before!balancing!the!equation.]!!The!only!way!to!balance!an!
equation!is!to!write!coefficients!in!front!of!formulae.!
!
A!lengthy!discussion!of!equation!balancing!is!not!provided!here.!!!Instead,!we!will!write!the!balanced!equation!with!the!
necessary!coefficients!in!place.!![The!carbon!and!oxygen!atoms!were!already!equal!on!each!sideE!only!hydrogen,!chlorine,!
and!potassium!atoms!were!“unbalanced”!and!required!adjustment!with!coefficients.]!
!
2!HCl!(aq)!!+! !!K2CO3!(s)!!!→! !H2O!(!)!!+! 2!KCl!(aq)! +! !!CO2!(g)!
!
Now!there!are!two!hydrogen,!two!chlorine,!two!potassium,!one!carbon,!and!three!oxygen!atoms!on!each!side!of!the!reaction!
equation.!!The!equation!is!a!complete!description!of!the!process.!
!
!
A!process!is!a!chemical!reaction!only!when!the!products!are!chemically!different!from!the!reactants—when!the!formulae!
change.!!If!only!the!state!of!matter!changes,!the!process!is!a!physical&change,!not!a!chemical!reaction.!!Physical!changes!
can!be!represented!in!equation!form!as!long!as!state!symbols!are!included.!!For!example,!the!sublimation!of!“dry!ice”!(solid!
carbon!dioxide)!into!its!gaseous!form!is!written:!
!
!
!
!
!
CO2!(s)! !!!→! !CO2!(g).!
Names&and&Formulae&Practice&#3—Balancing&Reaction&Equations&
!
Balance!each!of!the!following!chemical!reactions.!!In!some!cases,!you!must!first!write!correct!formulas!for!each!substance!
before!beginning!to!balance!the!equation.!!Replace!only!the!coefficients—never!change!the!formulas!!
!
Notes:!!reactants!are!written!on!the!left!side!of!the!equation,!and!products!are!written!on!the!right!side!of!the!equation.!!
Synonyms!for!“react”!are!“combine”,!“burn(s)!in”,!“added!to”,!and!the!like,!while!synonyms!for!“produce”!include!“form”,!
“make”,!“yield”,!and!“result!in”,!among!others.!
!
1.! S8!(s)! !
+! O2!(g)! !
→! !
SO3!(g)!
!
!
!
!
2.! Si2H3!(g)! +! O2!(g)! !
→! !
SiO2!(s)!!
+!! H2O!(!)!
!
!
!
!
3.! PCl5!(g)!!
+! H2O!(!)!!
→! !
HCl!(aq)!!
+!! H3PO4!(aq)!
!
!
!
!
4.! Fe!(s)! !
+! H2O!(!)! !
→! !
Fe3O4!(s)! +!! H2!(g)!
!
!
!
!
5.! BaCl2!(aq)! +! Al2(SO4)3!(aq)! →! !
BaSO4!(s)! +!! AlCl3!(aq)!
!
!
!
!
6.! NO2!(g)!!
+! H2O!(!)! !
→! !
HNO3!(aq)! +!! NO!(g)!
!
!
!
!
7.! SO2Cl!(!)! +! HI!(aq)!!
→! !
H2S!(g)! !!!+!H2O!(!)! +! HCl!(aq)!!!+!I2!(g)!
!
!
!
!
8.! CaC2!(s)!!
+! H2O!(!)! !
→! !
Ca(OH)2!(aq)! +!! C2H2!(g)!
!
!
!
!
9.! Hg2CO3!(s)! →! !
Hg!(!)! !!!!!!!+! !!!!!!HgO!(s)!!!!+!! CO2!(g)!
!
!
!
!
10.!zinc!+! hydrochloric!acid! →! !
zinc!chloride! +! hydrogen!
!
!
!
!
11.!carbon!dioxide! !
+! water! →! glucose!(C6H12O6)! +! oxygen!
!
!
!
!
12.!iron(III)!sulfate!!!!!+! potassium!hydroxide! →!!!!potassium!sulfate! !+! iron(III)!hydroxide!
!
!
!
!
13.!sodium! !
+! bromine!
→! sodium!bromide!
!
!
!
!
14.!
hydrogen!peroxide!is!unstableE!over!time,!it!decomposes!into!water!and!oxygen!
!
!
!
!
!
15.!
the!combusion!of!propane!(C3H8)!in!oxygen!produces!carbon!dioxide!and!water!
!
!
!
!
!
16.!
one!of!the!first!“noble!gas”!compounds,!xenon!hexafluoride,!was!formed!by!reacting!xenon!and!fluorine!
!
!
!
!
!
17.!
when!two!white!solids,!potassium!iodide!and!lead(II)!nitrate,!are!placed!in!a!test!tube!and!shaken,!the!mixture!
changes!color!due!to!the!formation!of!yellow!lead(II)!iodide!and!white!potassium!nitrate.!
!
!
!
!
!
18.!
elemental!gold!can!be!obtained!by!reacting!gold(III)!sulfide!with!hydrogenE!the!other!product!is!hydrogen!sulfide!
!
!
Calculating*Mass*Quantities*from*Chemical*Reaction*Equations**(section)3.8))
)
A)chemical)reaction)indicates)the)relative)proportions)of)substances)participating)in)the)reaction.))For)example,)in)the)
combustion)of)propane,)
)
→* *
)
C3H8*(g)* +** 5*O2*(g)* *
3*CO2*(g)* *+* 4*H2O*(g)*
)
we)see)that)each)molecule)of)C3H8)will)require)five)molecules)of)oxygen,)resulting)in)three)molecules)of)carbon)dioxide)and)
four)molecules)of)water.))It)is)important)to)view)a)chemical)equation)as)a)recipe—a)proportion,)not)a)prescription.))The)
quantities)of)reactants)can)be)“scaled)up”)or)“scaled)down”)as)necessary,)as)long)as)the)ratios)of)substances)are)maintained.))
One)could)just)as)easily,)and)usually)should,)interpret)the)reaction)equation)in)terms)of)moles,)rather)than)in)terms)of)
molecules:))each)mole)of)propane)will)react)with)five)moles)of)oxygen,)producing)three)moles)of)carbon)dioxide)and)four)
moles)of)water.)))
)
The)specific)number)of)moles)of)propane)used)to)perform)the)above)reaction)can)vary,)though)the)ratios)of)all)substances)
participating)in)the)reaction)must)be)maintained.))A)balanced)reaction)equation)indicates)the)ratios)in)which)all)substances)
participate,)and)one)can)use)those)ratios)to)determine)the)amounts)of)any)other)substance)participating)in)the)reaction)when)
the)amount)of)one)substance)is)known.)
)
The)calculation)of)relative)mass)quantities)in)chemical)reactions)is)known)as)stoichiometry,)and)is)based)on)the)mole)ratio)
of)substances)determined)from)the)balanced)reaction)equation.))Stoichiometric)calculations)generally)involve)three)steps:))
conversion)of)the)initial)quantity)to)moles)(using)molar)mass)or)molar)volume)of)gases),)relation)of)the)moles)of)the)given)
substance)to)moles)of)the)substance)sought)(using)the)mole)ratio)from)the)balanced)equation),)and)conversion)of)moles)of)
the)second)substance)to)whatever)quantity)is)required)(again)using)molar)mass)or)molar)volume).))The)amount)of)any)other)
substance)can)be)determined)from)the)known)amount)of)any)one)substance)via)this)process.)
)
Example:) ) What)mass)of)oxygen)must)react)with)propane)in)order)to)produce)50.00)g)of)water?)
)
Solution:)
Before)calculations)can)begin,)the)mole)ratio)of)propane)to)water)must)be)established)from)a)balanced)
reaction)equation.))In)this)case,)the)balanced)equation)is)already)provided—were)it)not,)we)would)have)to)
generate)it.)Once)the)reaction)equation)is)correctly)balanced,)the)first)step)in)the)stoichiometry)calculation)is)
to)convert)the)given)amount)of)the)substance)to)moles)of)the)same)substance:)
)
)
)
50.00)g)H2O)
)•) )1)mol)H2O)))))=))))2.77)mol)H2O.)
)
)
)
)
)
)
)
18.02)g)H2O)
)
The)moles)of)the)first)substance)are)then)used)to)determine)the)moles)of)the)second)substance.))According)
to)the)balancedXequation)“recipe”,)water)and)oxygen)react)in)a)4):)5)ratio)(in)the)equation,)the)coefficient)of)
H2O)is)4)and)that)of)O2)is)5).))When)2.77)mol)H2O,)react,)we)anticipate)
)
)
2.77)mol)H2O) )•) 5)mol)O2)) =) 3.47)mol)O2))))))will)be)required)to)produce)
)
)
)
)
)
))))))4)mol)H2O))))))))))))))))))))))))))))))2.77)mol)(50.00)g))of)water.)
)
)
)
Finally,)since)we)wish)to)know)the)mass)of)oxygen)reacted,)we)convert)moles)of)oxygen)(the)second)
substance))to)grams:)
)
)
3.47)mol)O2))•) )
)32.00)g)O2))))=)111*g*O2.)
)
)
)
)
)
)
)1)mol)O2)
)
)
It)is)more)efficient)to)perform)the)calculation)sequence)in)a)single)step,)and)the)result)will)be)more)accurate:)
)
50.00)g)H2O)
)•) ))1)mol)H2O)) )•) ))))5)mol)O2))
)•) ))32.00)g)O2)))))))=)111.0*g*O2.))
)
)
)
)
)18.02)g)H2O) )
)))4)mol)H2O) )
)))1)mol)O2)
)
Stoichiometry*Practice*#1—Stoichiometric*Calculation*
*
Work)must)be)shown)for)credit.)
*
1.) Barium)hydroxide)octahydrate)and)ammonium)thiocyanate)react)in)a)highly)endothermic)process:)
)
)
)
Ba(OH)2)∙)8)H2O)(s)) )))+)))))NH4SCN)(s)) )
→) )
Ba(SCN)2)(s)) +))) ))H2O)(!)) +) NH3)(g))
*
a.)) Balance)the)equation)that)describes)this)process.)
)
)
)
)
)
)
)
)
)
)
* b.) How)many)grams)of)ammonia)would)be)produced)if)27.10)g)of)barium)hydroxide)octahydrate)react)completely?)
)
)
)
)
)
)
)
)
)
2.) 40.0)g)of)solid)molybdenum(IV))sulfide)react)completely)with)gaseous)oxygen,)producing)solid)molybdenum(VI))oxide)
and)sulfur)dioxide)gas.)
*
)
)
)
)
)
)
)
)
)
)
)
a.) What)is)the)maximum)mass)of)molybdenum(VI))oxide)that)could)be)expected)from)this)reaction?)
*
*
*
*
*
*
*
*
*
b.) The)mass)of)molybdenum(VI))oxide)produced)is)less)than)the)mass)of)molybdenum(IV))sulfide)reacted.))How)is)this)
fact)not)a)violation)of)the)Law)of)Conservation)of)Mass?)
)
)
)
)
)
3.) Highly)pure)silicon,)used)in)the)electronics)industry,)can)be)produced)from)sodium)and)sodium)hexafluorosilicate.)
)
*
Na2SiF6)(s)) ))+) ))Na)(s)))))→) Si)(s)))))+) NaF)(s))
*
*
*
*
*
*
*
*
*
a.) How)much)additional)sodium,)in)grams,)would)be)required)to)completely)consume)150.0)g)of)sodium)
hexafluorosilicate?)
*
*
*
*
*
*
*
*
*
*
*
b.) What)mass)of)silicon,)and)what)mass)of)sodium)fluoride,)should)be)produced?))
*
*
*
*
*
*
*
*
*
*
*
*
*
c.) Is)mass)conserved)in)this)reaction?))Provide)proof.)
*
*
*
*
*
*
*
*
d.) How)much)silicon)could)be)produced)if)the)amount)of)sodium)calculated)in)part)a)is)doubled)(if)twice)as)much)
sodium)is)used)?))Justify)your)answer.)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Limiting*Reactants*and*Percent*Yield***
(sections)3.9)and)3.10))
)
)
C3H8*(g)* ***+*5*O2*(g)* **→***3*CO2*(g)*+* 4*H2O*(g)*
)
The)presence)of)two)reactants)(propane)and)oxygen))in)the)equation)above)indicates)that)both)substances)are)required)in)
order)for)the)reaction)to)occur.))The)process)will)therefore)stop)if)either)of)the)reactants)is)completely)consumed,)even)if)
some)amount)of)the)other)reactant)remains)unused.))The)reactant)that)is)consumed)completely)in)a)reaction)is)known)as)the)
limiting*reactant,)because)the)reaction)ceases)once)the)limiting)reactant)is)“used)up”.))One)cannot)easily)judge)which)
reactant)is)limiting)by)inspection)(the)one)with)less)mass)may)not)be)consumed)first),)but)one)can)always)determine)the)
limiting)reactant)by)knowing)its)definition.))Whichever)reactant)produces)the)least)amount)of)a)chosen)product)is)limiting,)
and)that)amount)of)product)is)the)maximum)possible)under)the)given)conditions.))[There)are)other)means)of)calculating)the)
limiting)reactant,)but)they)are)more)likely)to)lead)to)confusion)and)erroneous)conclusions.]))Therefore,)to)decide)which)
reactant)is)limiting,)simply)use)the)measured)amounts)of)each)reactant)to)determine)which)makes)the)least)amount)of)the)
same)product.)
)
Example:) ) If)100.0)g)each)of)oxygen)and)propane)were)allowed)to)react,)how)much)water)would)be)produced?)
)
Solution:))
Oxygen)and)propane)will)react)simultaneously)and)their)quantities)will)diminish)until)one)of)the)reactants)is)
completely)consumed.))The)reaction)will)stop)at)that)point,)and)no)more)product)will)result.))Whichever)
reactant)produces)the)least)amount)of)the)product)(water)is)specified)here))is)limiting.)
)
100.0)g)O2) )•) ))))1)mol)O2))
)•) ))))4)mol)H2O)) )•) ))18.02)g)H2O)))=)45.05*g*H2O.)
)
)
)
)))32.00)g)O2) )
)))))5)mol)O2)
)
)))))1)mol)H2O)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
100.0)g)C3H8) )•) ))))1)mol)C3H8)))•) )4)mol)H2O)))•) ))18.02)g)H2O))=)163.5*g*H2O.)
)
)
)
)
)))44.09)g)C3H8)))
)1)mol)C3H8))
)))1)mol)H2O) )
)
)
)
)
)
We)must)not)combine)the)amounts)produced)by)each)reactant,)nor)assume)that)“bigger)is)better”.))The)maximum)amount)
possible)from)the)reaction)is)produced)by)the)limiting)reactant,)and)is)the)smallest)of)the)calculated)amounts.))A)maximum)of)
45.05)g)H2O)would)be)possible)from)the)reaction)of)100.0)g)oxygen)and)100.0)g)propanef)once)100.0)g)of)oxygen)have)
reacted,)producing)45.05)g)H2O,)no)more)oxygen)remains,)and)the)reaction)stops.)
)
Some)propane)will)remain)unreactedf)we)can)determine)the)amount)using)stoichiometry.))Because)oxygen)is)the)limiting)
reactant,)we)assume)that)it)is)completely)consumed,)and)calculate)the)amount)of)propane)that)would)react)with)100.0)g)O2:)
)
100.0)g)O2) )•) ))))1)mol)O2))
)•) )))1)mol)C3H8)) )•) ))44.09)g)C3H8))))=)27.56*g*C3H8*react.)
)
)
)
)))32.00)g)O2) )
)))))5)mol)O2))
)))) )))1)mol)C3H8)
)
)
)
)
)
)
)
)
)
)
We)have)calculated)the)amount)of)propane)consumedf)the)amount)unreacted)is)simply)the)difference)between)the)initial)
amount)and)the)amount)reacted:)
)
)
)
)
)
)
)
)
100)–)27.56)=)72.44*g*C3H8)remain.)
)
Reactions)rarely)go)to)100%)completion)when)stoichiometric)amounts)(exact)proportions)of)all)substances))are)usedf)most)
often,)the)most)expensive)or)most)important)reactant)is)made)to)react)completely)by)using)excess)amounts)of)the)other)
reactants.))With)the)large)excess)of)oxygen,)for)example,)we)could)be)quite)certain)that)all)of)the)propane)molecules)would)
find)a)reaction)partner)and)be)converted)to)water)and)carbon)dioxide.)))
)
Even)under)ideal)reaction)conditions,)though,)the)amount)of)product)is)generally)less)than)the)calculated—theoretical—
amount.))We)use)a)simple)relation)called)percent*yield,)which)is)simply)the)actual)(measured))amount)obtained,)divided)by)
the)theoretical)(calculated))amount,)and)multiplied)by)100)to)produce)a)percentage.)
)
)
)
percent)yield)=)))))))measured)yield) )
•) 100)
)
)
)
)
)
)
))))calculated)yield)
*
Stoichiometry*Practice*#2—Limiting*Reactants*
*
Work)must)be)shown)for)credit.)
*
1.) Ammonia)and)oxygen)can)combine)to)produce)nitrogen)monoxide)and)water:)
)
)
)
NH3)(g)))
+) )
O2)(g)) )
→) )
NO)(g)) )
+)) )
H2O)(g))
*
a.)) Balance)the)equation)that)describes)this)process.)
)
)
)
)
* b.) How)many)grams)of)water)would)be)produced)if)1320)g)of)ammonia)react)completely?)
)
)
)
)
)
)
)
c.) 4400)g)of)ammonia)and)10300)g)of)oxygen)are)combined.))Which)reactant)is)in)excess?))[Provide)complete))
proof)of)your)assertion.]*
*
*
*
*
*
*
*
d.) How)much)of)the)excess)reactant,)in)grams,)would)be)left)over?)
)
)
)
)
)
)
)
2.) Aluminum)sulfide)is)formed)by)the)reaction)of)9.91)g)sulfur)and)6.90)g)aluminum.)
*
a.) Write)and)balance)the)chemical)equation)for)this)reaction.)
)
)
)
)
)
b.) What)is)the)maximum)amount)of)aluminum)sulfide)that)could)be)expected)from)this)reaction?)
*
*
*
*
*
*
*
*
*
c.) If)the)percent)yield)of)the)reaction)is)88.2%,)how)much)aluminum)sulfide)was)actually)obtained?)
)
)
)
)
3.) Ammonium)chloride)and)calcium)hydroxide)react)to)form)calcium)chloride,)ammonia,)and)water.)
)
*
*
*
*
*
*
*
)
a.) How)many)grams)of)water)would)be)produced)if)32)g)of)ammonium)chloride)react)completely?)
*
*
*
*
*
*
*
*
b.) 47)g)of)calcium)hydroxide)and)24)g)of)ammonium)chloride)are)combined.))Which)reactant)is)limiting?)
*
*
*
*
*
*
*
*
c.) How)much)of)the)excess)reactant,)in)grams,)would)be)left)over?)
*
*
*
*
*
*
*
*
)
d.) 5.88)g)ammonia)were)produced.))What)is)the)percent)yield)of)the)reaction?)
*
*
*