* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Informatics in Radiology: Sliding-Thin
Survey
Document related concepts
Transcript
Note: This copy is for your personal non-commercial use only. To order presentation-ready copies for distribution to your colleagues or clients, contact us at www.rsna.org/rsnarights. INFORMATICS 317 Informatics in Radiology Sliding-Thin-Slab Averaging for Improved Depiction of Low-Contrast Lesions with Radiation Dose Savings at Thin-Section CT1 Christian von Falck, MD • Michael Galanski, MD, PhD • Hoen-oh Shin, MD TEACHING POINTS See last page Current multidetector computed tomography (CT) scanners allow volumetric data acquisition with thin-section collimations and overlapping section reconstructions. The resultant nearly isotropic data sets help minimize partial-volume averaging effects and are ideal for twoand three-dimensional postprocessing and software-assisted lesion detection and quantification. However, the section thickness, image noise, and radiation dose are closely related, and when one parameter must be altered to suit the clinical setting, the others may be affected. When the clinical purpose demands both high spatial resolution and low image noise (eg, for the detection of hypoattenuating lesions in organs such as the kidneys and liver), the necessary trade-off—an increase in the radiation dose to the patient—may be unacceptable. The application of a sliding-thin-slab averaging algorithm during image postprocessing and review helps overcome this limitation by reconstructing thicker sections with lower noise levels from thin-section data obtained with dose-saving protocols. In principle, a high noise level is acceptable in the initial reconstruction of the CT volume data set. During image review at the workstation, the section thickness can be interactively increased to minimize image noise and improve lesion detectability. The combination of thin-section scanning with thick-section display allows routine volumetric imaging without a general increase in radiation dose or a reduction in the detectability of low-contrast lesions. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148 /rg.302096007/-/DC1. © RSNA, 2010 • radiographics.rsna.org Abbreviation: SNR = signal-to-noise ratio RadioGraphics 2010; 30:317–326 • Published online 10.1148/rg.302096007 • Content Codes: From the Department of Radiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany. Received May 1, 2009; revision requested August 3 and received September 9; accepted September 17. All authors have no financial relationships to disclose. Address correspondence to C.V.F. (e-mail: [email protected]). 1 © RSNA, 2010 318 March-April 2010 Introduction Multidetector computed tomography (CT) scanners with 64 or more detector rows enable the routine use of submillimetric collimation for image acquisition and the reconstruction of highresolution isotropic image data sets. The resultant data sets help minimize through-plane partialvolume averaging effects and are optimally suited for two- and three-dimensional postprocessing with techniques such as multiplanar reformatting and interactive volume rendering, as well as for software-assisted lesion detection and quantification (1–5). However, image noise is inversely related to section thickness; thus, a decrease in the acquired section thickness leads to increased image noise, which can be offset only by altering the image acquisition protocol in ways that result in an increased radiation dose to the patient. On one hand, radiation dose control in accordance with the ALARA (as low as reasonably achievable) principle demands careful adjustment of the acquisition protocol to allow only the exposure necessary to answer the specific clinical question. On the other hand, the clear depiction of lowcontrast objects is essential to many multidetector CT applications (eg, abdominal imaging evaluations), and diagnostic fidelity may be substantially degraded by increased image noise (6,7). We recommend that thin-section scanning be combined with sliding-thin-slab averaging during data postprocessing and image display, to gain both high through-plane spatial resolution with minimal partial-volume averaging effects and excellent depiction of low-contrast lesions. In the initial stage of data postprocessing, a secondary “raw” data set is reconstructed from a CT volume data set that consists of overlapping sections with a thickness of 1 mm or less, acquired at standard radiation dose levels comparable to those for scanning with thicker sections (eg, 5 mm) (8). A relatively high degree of noise is acceptable on the images from this initial reconstruction. On many commercially available workstations, the section thickness can be interactively modified in real time by using the sliding-thinslab averaging algorithm. This approach allows greater flexibility in multidetector CT scanning, with the scanning protocol defining only the radiographics.rsna.org lower limit for section thickness. Thin-slab images can easily be generated in any plane necessary for the assessment of parenchymal organs, without sacrificing through-plane resolution. The article reviews the interdependence of radiation dose, image noise, and lesion detectability and highlights the difficulty of objectively measuring the detectability of low-contrast objects on CT scans. Various approaches for improving low-contrast lesion detectability are summarized, and the sliding-thin-slab technique is described in detail. Relations between Image Noise, Image Quality, and Patient Dose Image noise, patient dose, and image quality are closely related. According to basic signal processing theory, noise generally impairs the detection of signals (9). On multidetector CT scans, image noise impairs the depiction of lesions in an organ or tissue. Much higher image noise levels can be tolerated in the depiction of organs with physiologic high contrast, such as that between air and soft tissue in the lung, than in that of organs with low contrast, such as the liver (Fig 1) (10,11). A simple but useful descriptor of CT image quality with respect to noise is the signal-to-noise ratio (SNR), which is the ratio of the signal (the mean attenuation value measured in Hounsfield units in a region of interest within a lesion) to noise (the standard deviation of the attenuation values in a region in the background) (9). The relationship between the SNR and the applied dose (D) can be defined as follows: SNR ∝ √D ⇔ D ∝ SNR2. (1) A more sophisticated formula by Brooks and DiChiro (12) characterizes the interdependence of patient dose, scanning parameters, and image quality as D∝ B , σ2 • a2 • b • h (2) where D is the radiation dose to the patient, B is the object attenuation factor equivalent to exp(µ · d), µ is the mean attenuation coefficient of the object, d is the object thickness, σ is the variance of the CT numbers (in Hounsfield units), a is the distance between two sampling points measured at the isocenter of the scanner, b is the effective beam thickness (detector collimation), and h is the section thickness. RG • Volume 30 Number 2 von Falck et al 319 Figure 1. (a, b) Axial multidetector CT images of the lungs show no substantial improvement in the detectability of high-contrast lesions when image noise is reduced by increasing the reconstructed section thickness from 1 mm (a) to 5 mm (b). (c, d) Axial multidetector CT images at the level of the liver show a marked improvement in the detectability of low-contrast lesions (arrows) when image noise is reduced by increasing the reconstructed section thickness from 1 mm (c) to 5 mm (d). Not only are the large lesions better delineated in d, but three smaller lesions (bottom arrows) are visible. As mentioned earlier, image noise degrades the detectability of low-contrast lesions at CT (Fig 1). In theory, a variable K can be defined that represents the threshold attenuation value at which a lesion on a CT image becomes detectable, at a defined level of statistical probability, against the surrounding background attenuation. Obviously, the quantity of image noise alone, whether it is calculated as the variance of attenuation values or as the SNR, is not a sufficient descriptor of lesion detectability. Other noise characteristics, such as the image texture or “granularity,” must be taken into account (10,11). A mathematically precise description of the magnitude of image noise can be achieved by calculating the noise power spectrum, which is determined by the spatial frequency of noise on the CT image (13,14). The interdependence of object size, noise characteristics, and lesion detectability is illustrated in Figure 2. 320 March-April 2010 radiographics.rsna.org Figure 2. Diagrams show the effect of noise characteristics on lesion detectability. The lesion (black dot) is much more visible against a background of high-spatial-frequency noise (a) than against a background of low-spatial-frequency noise (b), although the noise magnitude (calculated as the standard deviation of the background gray-scale values) is similar. Since most parenchymal lesions seen in the clinical setting are roughly spherical, we can safely base our calculations on the mathematical approximation of a spherical object. The detectability threshold K of a spherical lesion is dependent on the lesion diameter d and inversely related to the SNR and the square root of the applied dose D, as shown in the following equation (9): Kd ∝ 1 1 . ∝ √D SNR (3) However, the dependence of the detectability threshold K on lesion size d cannot be readily calculated, because noise on CT images is not mathematically uniform and does not follow a defined statistical distribution (13,14). As a consequence, lesion detectability can be measured only by comparing the results of multiple human readings, performing various statistical analyses, or creating experimental models of the human visual system, as described in the following section. Measuring the Detectability of Low-Contrast Objects It is widely accepted that the detectability of highcontrast objects such as a wire phantom at CT can be quantified by using objective measures such as the modulation transfer function. However, there is less agreement about approaches for objectively determining the detectability of low-contrast objects at CT (9–11). For purposes of scanner quality control and scientific studies, analyses of receiver operating characteristic curves in reader studies are the method of choice. Although the accuracy of results is limited by the intra- and interobserver variability of human readers, this approach is still the reference standard for assessing low-contrast performance and may be appropriate for clinical and experimental studies with a limited number of cases. However, in larger studies (with hundreds or thousands of images), classic readerbased analyses are not practical (10,11). Alternative approaches have been reported but not yet widely validated. One approach, proposed by the American Society for Testing and Materials (15) and a CT scanner manufacturer (16), is based on the use of statistical analysis of background noise levels within a phantom to quantify the effects of various postprocessing techniques on the detectability of low-contrast objects (10,11). This method allows the analysis of a larger number of data sets and eliminates the intra- and interobserver variability found in studies based on human readings. More sophisticated models of the human visual system also have been used to estimate image quality and lesion detectability, but clinical validation is still lacking (17,18). Optimizing the Detectability of Low-Contrast Objects Various means are available for improving image quality and low-contrast lesion detectability by reducing noise at thin-section multidetector CT: For example, during image acquisition, an increase in radiation dose to the patient can help improve image quality by reducing quantum RG • Volume 30 Number 2 von Falck et al 321 Figure 3. Graphs show the theoretical relationship of radiation exposure and section thickness in constant (a) and variable (b) noise conditions. When image noise is kept constant and section thickness is reduced, the radiation dose to the patient increases in inverse proportion to the reduction of section thickness, as shown in a. When image noise is allowed to increase, the radiation dose ceases to be dependent on section thickness, as shown in b. Effects of scanner and beam geometry such as overbeaming and overranging are not reflected in the curves. noise and increasing the SNR; during image data reconstruction, a “soft” reconstruction kernel may be used and various data filters applied; and during image display and review, the window and level settings may be adjusted and sliding-thinslab averaging may be applied to optimize the depiction of low-contrast objects. Changes made in the acquisition protocol to improve image quality by reducing the magnitude of noise and increasing the SNR result in an additional radiation burden to the patient, as demonstrated by Equation 1. An increase in the SNR by a factor of 1.4 results in doubling of the radiation dose. The acceptability of a dose increase depends on the clinical situation, but routine use of high radiation dose levels at thin-section multidetector CT is not recommended (19). By contrast, the choice of an appropriate “soft” reconstruction kernel can substantially reduce image noise and improve the detectability of lowcontrast lesions without affecting the radiation dose to the patient (9,20). Although the reconstruction algorithm does not directly influence the patient dose, the selection of the appropriate kernel can help improve diagnostic accuracy at multidetector CT performed with dose-saving protocols tailored to the specific clinical situation. Because the properties of reconstruction algorithms are not standardized and vary greatly among vendors and scanner types, no general recommendations can be made with regard to optimal settings (20). In principle, the choice of a specific reconstruction algorithm involves a tradeoff between the desired spatial resolution and the acceptable quantity of image noise. Window width and level settings at the workstation are closely related to the image noise level and lesion detectability. According to various observers, the window width is inversely proportional to the noise magnitude (21,22). Soft copy reading is now standard in many radiology departments, and all multimodality and picture archiving and communication system workstations allow interactive adjustment of the window width and level settings for optimal display and interpretation of a particular image data set. For hard copy–based readings of liver studies, the use of an additional window is recommended by some authors (23,24). Although the choice of reconstruction algorithm is limited to the options available on the CT scanner, additional data filters can be readily applied to reduce image noise and improve low-contrast lesion detectability. However, use of the wrong filter may degrade image quality and reduce diagnostic fidelity (25). There is as yet no standardized approach for such data filtering, and detailed statistical analyses are needed to prove diagnostic effectiveness. In principle, the section thickness does not affect the radiation burden to the patient as long as volume coverage and all other scanning parameters remain unchanged. However, when section thickness is halved and image quality (ie, image noise) is to be kept constant, the patient dose must double (Eq 2; Fig 3). By contrast, the acquisition of thicker sections can lead to a significant improvement in image quality (ie, an increase in SNR) without an increase in patient dose. The 322 March-April 2010 radiographics.rsna.org Figures 4, 5. (4) Three-dimensional drawing shows the phantom (QRM, Moehrendorf, Germany) used to obtain the images in Figures 5, 7, and 9. The phantom contains multiple solid spheres with diameters of 3, 4, 5, 6, and 8 mm, which are embedded in a semisolid medium. Attenuation is calibrated to 15 HU for the spheres and 35 HU for the background, with a resultant object contrast of 20 HU to simulate the appearance of hypoattenuating lesions. The spheres are positioned at intervals throughout the x-y plane and along the z-axis to allow the evaluation of low-contrast performance not only in the primary (axial) reconstruction plane but also in sagittal and coronal planes. (5) Multidetector CT image series obtained in the low-contrast phantom demonstrates the interdependence of section thickness and image quality. Noise increases markedly with decreasing reconstructed section thickness from 5 to 3 to 1 mm (left to right) when the radiation dose is kept constant (top row), whereas the SNR remains constant when the dose is increased (bottom row). As symbolized by the black line below the bottom row of images, the dose used with a section thickness of 1 mm is five times that used with a section thickness of 5 mm. major drawback of increasing the section thickness is a resultant increase in through-plane partialvolume averaging effects, which degrade multiplanar reformatted images and three-dimensional volume-rendered images. Partial-volume averaging effects also increase the likelihood that small lesions will be missed (9–11) (Figs 4, 5). Overranging and overbeaming, two other effects of multidetector CT scanning, also may undermine dose efficiency at CT (26,27). Overranging refers to additional gantry rotations that are automatically performed by the scanner to acquire enough data for image reconstruction when the section thickness and pitch selected for reconstruction exceed the user-planned extension of scanning along the z-axis (26). The number of additional rotations varies, depending on the scan parameters; it generally increases with increasing collimation, increasing section thickness in the primary reconstruction, and increasing pitch. The term overbeaming describes another impairment of CT scanner geometry, with a resultant penumbra effect on images. It is well known that four-channel multidetector CT scanners suf- fer from inferior dose efficiency when used for thin-section scanning, with a resultant increased radiation dose as much as twice that incurred by scanning with thicker sections. However, when thin-section scanning is performed on multidetector CT scanners with 16 or more detector rows, the overbeaming effect is much diminished. The choice of section thickness at thin-section CT scanning involves a trade-off between the benefits of nearly isotropic voxels on one hand and the disadvantages of image noise and radiation dose on the other. However, the use of a sliding-thin-slab averaging algorithm at image reconstruction allows the advantage of thin-section scanning, namely the reduction of through-plane partial-volume averaging effects, to be retained, while the detectability of low-contrast objects is improved by the retrospective generation of thicker sections. It has been reported that the rate of detection of low-contrast objects can be increased by a factor of 1.1–1.7 over that based on standard axial reconstructions, an improvement comparable to that achieved with an increase in radiation dose by a factor of 1.2–2.9 (11). The technique of sliding-thin-slab averaging is described in more detail in the next section. RG • Volume 30 Number 2 von Falck et al 323 Figure 6. Diagrams show the principles underlying the application of the sliding-thin-slab averaging algorithm. A volumetric CT data set may be visualized as a stack of several hundred to more than one thousand axial image sections obtained at regular intervals along the z-axis (a). The sliding-thin-slab averaging algorithm is used to reconstruct a subvolume (slab) that is located between two parallel clipping planes perpendicular to the arbitrarily chosen viewing direction; the clipping planes are selected by the reader to define the location and thickness of the slab, which should be greater than the acquired section thickness. All voxels that are located along the viewing axis and within the subvolume are averaged and displayed as a single “thick” section (average intensity projection) so as to minimize image noise (b). During interactive (cine) image review, the subvolume can be moved along the viewing axis in increments equivalent to the reconstruction interval to allow visualization of the entire lesion. (Ideally, the increment should be 30%–50% of the acquired section thickness, when overlapping reconstruction is performed.) With this method, image noise can be reduced without a corresponding increase in partial-volume averaging effects. Sliding-Thin-Slab Averaging Technique The sliding-thin-slab averaging technique is applied to a viewer-selected subvolume of the acquired CT data set. The thickness of this subvolume or slab is determined by the distance between two parallel clipping planes that are perpendicular to the arbitrarily chosen viewing direction. Various rendering methods, such as average, maximum, and minimum intensity projections or volume rendering techniques, may be applied to the selected slab (28). When the sliding-thinslab averaging algorithm is used, the trade-off between spatial resolution and image noise can be interactively optimized in response to the varying demands that arise during the reading process (11) (Fig 6). A major advantage of this approach is that the slab can be moved along the viewing direction in increments (steps) of 1 mm or less to allow depiction of the entirety or the major part of a lesion so as to minimize partial-volume averaging effects. In contrast, the primary acquisition of thicker sections and the use of larger recon- struction intervals automatically lead to a larger step interval and increased partial-volume averaging effects (Movie 1 [online]). The usefulness of the sliding-thin-slab averaging algorithm is not restricted to the reconstruction of axial images but is equally relevant to that of multiplanar and oblique views. Indeed, by retaining the high through-plane spatial resolution of thin-section acquisitions while decreasing image noise and increasing the SNR, this technique enables substantial improvement in the detectability of low-contrast lesions on both axial and reformatted images. The approach provides obvious clinical advantages (Figs 7, 8). Yet another factor influences the quality of images reconstructed with the sliding-thin-slab averaging algorithm: In the primary (axial) reconstruction of raw image data, image noise is correlated along the z-axis. 324 March-April 2010 radiographics.rsna.org Figure 7. Benefits of using the sliding-thin-slab averaging algorithm for multiplanar reconstruction of thin-section CT data. (a, b) Axial (top) and coronal (bottom) images reconstructed from a volume data set obtained in the low-contrast phantom show greatly reduced SNR and severely deteriorated visibility of low-contrast objects with a reconstructed section thickness of 1 mm (a) in comparison with those obtained with a reconstructed section thickness of 5 mm (b). However, relatively poor through-plane resolution results in unclear delineation of the low-contrast objects in the coronal image in b. (c) Axial (top) and coronal (bottom) images obtained by applying the sliding-thin-slab algorithm (slab thickness, 5 mm) to the reconstructed data set used in a show high through-plane resolution with a higher SNR and better visibility of low-contrast objects, especially in the coronal view. Therefore, noise is even more effectively suppressed on sagittal and coronal images than on axial images reconstructed with the sliding-thinslab averaging algorithm (Figs 9, 10). Although the sliding-thin-slab technique has been implemented on many commercially available multimodality and picture archiving and communication workstations, there are hardly any objective data in the literature to indicate an effect on reader performance in the detection of low-contrast lesions. Previous studies were focused mainly on the use of this technique to obtain maximum or minimum intensity projections for pulmonary evaluations (29,30). Lee et al, in two separate studies (31, 32), showed that the sliding-thin-slab display mode enhances reader confidence when compared with the stack mode in the diagnosis of acute appendicitis (31) and that the summation of thin sections is equivalent to the primary reconstruction of thicker sections (32). More recently, it was demonstrated that the optimal slab thickness depends on the size of the lesion to be detected and that the slab thickness should be interactively varied during the reading process at the workstation (11) (Movie 2 [online]). Optimal lesion detectability is obtained with a slab thickness that is one-half the lesion diameter. The fact that the sliding-thin-slab averaging algorithm is not yet available on all commercially available workstations may be a deterrent to the routine use of this postprocessing technique in the interpretation of multidetector CT studies. However, the CT workflow can be optimized by using the primary reconstructed thin-section data set to generate thin-slab multiplanar reformatted images in standard orientations (adapted for optimal evaluation of the specific region) directly at the scanner console. The necessary steps may be completed by the technician in accordance with predefined protocols or may be incorporated in automated postprocessing programs on scanners of recent generations. Although this alternative approach does not permit interactive optimization of section thickness by the reader, it is a reasonable compromise when the sliding-thin-slab averaging algorithm is not available at the picture archiving and communication workstation. Conclusions Sliding-thin-slab averaging allows the reconstruction of high-resolution multiplanar images from thin-section CT data sets without necessitating an increase in radiation dose to preserve visibility of low-contrast features. RG • Volume 30 Number 2 von Falck et al 325 Figure 8. Benefits of combining thin-section scanning with sliding-thin-slab averaging for CT evaluation of the kidneys. (a, b) Coronal reformatted images from a raw volume data set reconstructed with section thicknesses of 1 mm (a) and 5 mm (b) show higher spatial resolution in a but less image noise in b. (c) Coronal image obtained by applying the sliding-thin-slab algorithm to the reconstructed data set used in a shows an improvement in image noise, with preservation of high through-plane resolution. Figures 9, 10. (9) Coronal (left column) and axial (right column) images reconstructed from the same thin-section CT image data set by using the standard algorithm with a section thickness of 1 mm (top row) and the sliding-thin-slab averaging algorithm with a slab thickness of 5 mm (bottom row) show differences in noise characteristics related to the plane and thickness of sections. Noise is less uniform with greater low-frequency content on the coronal reformatted images than on the axial images, a characteristic that makes lesion detection more challenging. As expected, both images reconstructed with sliding-thin-slab averaging show improvement in the SNR, with a more pronounced effect on the coronal image. (10) Graph shows the relationship between image noise (calculated as the standard deviation of gray-scale values, from 0 to 12 au) and slab thickness (number of acquired sections included in the slab, from one to 20 sections) for axial (solid line) and coronal (dotted line) reconstructions. Note that image noise is uniformly higher on axial images than on coronal views. 326 March-April 2010 The combination of thin-section acquisitions with thick reconstructions is a useful paradigm for multidetector CT with dose-saving protocols. References 1.Rubin GD. 3-D imaging with MDCT. Eur J Radiol 2003;45(suppl 1):S37–S41. 2.Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN. Introduction to the language of three-dimensional imaging with multidetector CT. RadioGraphics 2005;25(5):1409–1428. 3.Rydberg J, Sandrasegaran K, Tarver RD, Frank MS, Conces DJ, Choplin RH. Routine isotropic computed tomography scanning of chest: value of coronal and sagittal reformations. Invest Radiol 2007;42(1): 23–28. 4.Sandrasegaran K, Rydberg J, Lall CG, Hameed T, Hawes DR, Kopecky KK. Routine isotropic computed tomography scanning of the abdomen and pelvis. Australas Radiol 2006;50(2):93–101. 5.Das M, Mühlenbruch G, Katoh M, et al. Automated volumetry of solid pulmonary nodules in a phantom: accuracy across different CT scanner technologies. Invest Radiol 2007;42(5):297–302. 6.Abdelmoumene A, Chevallier P, Chalaron M, et al. Detection of liver metastases under 2 cm: comparison of different acquisition protocols in four row multidetector-CT (MDCT). Eur Radiol 2005;15 (9):1881–1887. 7.Kawata S, Murakami T, Kim T, et al. Multidetector CT: diagnostic impact of slice thickness on detection of hypervascular hepatocellular carcinoma. AJR Am J Roentgenol 2002;179(1):61–66. 8.Prokop M. Multislice CT: technical principles and future trends. Eur Radiol 2003;13(suppl 5): M3–M13. 9.Buzug TM. Image quality and artefacts. In: From photon statistics to modern cone-beam CT. Heidelberg, Germany: Springer, 2008; 403–484. 10.Shin HO, Falck CV, Galanski M. Low-contrast detectability in volume rendering: a phantom study on multidetector-row spiral CT data. Eur Radiol 2004; 14(2):341–349. 11.von Falck C, Hartung A, Berndzen F, King B, Galanski M, Shin HO. Optimization of low-contrast detectability in thin-collimated modern multidetector CT using an interactive sliding-thin-slab averaging algorithm. Invest Radiol 2008;43(4):229–235. 12.Brooks RA, Di Chiro G. Statistical limitations in x-ray reconstructive tomography. Med Phys 1976;3 (4):237–240. 13.Boedeker KL, Cooper VN, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: part I. Measurement of noise power spectra and noise equivalent quanta. Phys Med Biol 2007;52(14):4027–4046. 14.Boedeker KL, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: part II. Noise power spectra and signal to noise. Phys Med Biol 2007;52(14):4047–4061. 15.ASTM International. Standard test method for measurement of computed tomography (CT) sys- radiographics.rsna.org tem performance. http://www.astm.org/Standards /E1695.htm. Accessed March 2, 2008. 16.Chao EH, Toth TL, Bromberg NB, et al. A statistical method of defining low contrast detectability [abstr]. Radiology 2000;217(P):162. 17.Eckert MP, Bradley AP. Perceptual quality metrics applied to still image compression. Signal Process 1998;70:177–200. 18.Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13 (4):600–612. 19.Dalrymple NC, Prasad SR, El-Merhi FM, Chintapalli KN. Price of isotropy in multidetector CT. RadioGraphics 2007;27(1):49–62. 20.Nagel HD. Radiation exposure in computed tomography: fundamentals, influencing parameters, dose assessment optimization. 4th ed. Hamburg, Germany: CTB Publications, 2002. 21.Husstedt H, Prokop M, Becker H. Window width as a dosage-relevant factor in high-contrast structures in CT [in German]. Rofo 1998;168(2):139–143. 22.Goldman LW. Principles of CT: radiation dose and image quality. J Nucl Med Technol 2007;35(4):213– 225. 23.Mayo-Smith WW, Gupta H, Ridlen MS, Brody JM, Clements NC, Cronan JJ. Detecting hepatic lesions: the added utility of CT liver window settings. Radiology 1999;210(3):601–604. 24.Pomerantz SM, White CS, Krebs TL, et al. Liver and bone window settings for soft-copy interpretation of chest and abdominal CT. AJR Am J Roentgenol 2000;174(2):311–314. 25.Hilts M, Duzenli C. Image filtering for improved dose resolution in CT polymer gel dosimetry. Med Phys 2004;31(1):39–49. 26.van der Molen AJ, Geleijns J. Overranging in multisection CT: quantification and relative contribution to dose—comparison of four 16-section CT scanners. Radiology 2007;242(1):208–216. 27.Theocharopoulos N, Damilakis J, Perisinakis K, Gourtsoyiannis N. Energy imparted-based estimates of the effect of z overscanning on adult and pediatric patient effective doses from multi-slice computed tomography. Med Phys 2007;34(4):1139–1152. 28.Turlington JZ, Higgins WE. New techniques for efficient sliding thin-slab volume visualization. IEEE Trans Med Imaging 2001;20(8):823–835. 29.Napel S, Rubin GD, Jeffrey RB Jr. STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr 1993;17(5):832–838. 30.Remy-Jardin M, Remy J, Gosselin B, Copin MC, Wurtz A, Duhamel A. Sliding thin slab, minimum intensity projection technique in the diagnosis of emphysema: histopathologic-CT correlation. Radiology 1996;200(3):665–671. 31.Lee KH, Kim YH, Hahn S, et al. Computed tomography diagnosis of acute appendicitis: advantages of reviewing thin-section datasets using sliding slab average intensity projection technique. Invest Radiol 2006;41(7):579–585. 32.Lee KH, Hong H, Hahn S, Kim B, Kim KJ, Kim YH. Summation or axial slab average intensity projection of abdominal thin-section CT datasets: can they substitute for the primary reconstruction from raw projection data? J Digit Imaging 2008;21(4): 422–432. RG Volume 30 • March April Issue 2009 von Falck et al Sliding-Thin-Slab Averaging for Improved Depiction of LowContrast Lesions with Radiation Dose Savings at Thin-Section CT Christian von Falck, MD • Michael Galanski, MD, PhD • Hoen-oh Shin, MD RadioGraphics 2010; 30:317–326 • Published online 10.1148/rg.302096007 • Content Codes: Page 318 In the initial stage of data postprocessing, a secondary “raw” data set is reconstructed from a CT volume data set that consists of overlapping sections with a thickness of 1 mm or less, acquired at standard radiation dose levels comparable to those for scanning with thicker sections (eg, 5 mm) (8). A relatively high degree of noise is acceptable on the images from this initial reconstruction. Page 322 the use of a sliding-thin-slab averaging algorithm at image reconstruction allows the advantage of thin-section scanning, namely the reduction of through-plane partial-volume averaging effects, to be retained, while the detectability of low-contrast objects is improved by the retrospective generation of thicker sections. Page 324 noise is even more effectively suppressed on sagittal and coronal images than on axial images reconstructed with the sliding-thin-slab averaging algorithm Page 324 it was demonstrated that the optimal slab thickness depends on the size of the lesion to be detected and that the slab thickness should be interactively varied during the reading process at the workstation (11). Optimal lesion detectability is obtained with a slab thickness that is one-half the lesion diameter. Page 326 The combination of thin-section acquisitions with thick reconstructions is a useful paradigm for multidetector CT with dose-saving protocols.