Download Electron microscopy in molecular cell biology I

Document related concepts

Aharonov–Bohm effect wikipedia , lookup

Lepton wikipedia , lookup

Hydrogen atom wikipedia , lookup

Electron mobility wikipedia , lookup

Introduction to gauge theory wikipedia , lookup

Condensed matter physics wikipedia , lookup

Quantum electrodynamics wikipedia , lookup

Diffraction wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Transcript
Electron microscopy
in molecular cell biology I
Electron optics and image formation
Werner Kühlbrandt
Max Planck Institute of Biophysics
Donnerstag, 3. Juli 14
Objects of interest
•
•
•
•
•
•
•
•
•
•
•
•
Galaxy!
!
Solar system!
Planet!
!
Man!
!
Fly! !
!
Cell !
!
Bacterium! !
Virus!
!
Protein!
!
Sugar molecule!
Atom!
!
Electron! !
Donnerstag, 3. Juli 14
!
!
!
!
!
!
!
!
!
!
!
!
106 light years!
light minutes! !
20,000 km!
!
1.7 m! !
!
3 mm! !
!
50 µm! !
!
1 µm! !
!
100 nm!
!
10 nm! !
!
1 nm! !
!
0.1 nm = 1Å! !
0.1 pm!!
1022 m
1010 m
107 m
100 m
10-3 m
10-5 m
10-6 m
10-7 m
10-8 m
10-9 m
10-10 m
10-13 m
biology
Objects of interest
•
•
•
•
•
•
•
•
•
•
•
•
Galaxy!
!
Solar system!
Planet!
!
Man!
!
Fly! !
!
Cell !
!
Bacterium! !
Virus!
!
Protein!
!
Sugar molecule!
Atom!
!
Electron! !
Donnerstag, 3. Juli 14
!
!
!
!
!
!
!
!
!
!
!
!
106 light years!
light minutes! !
20,000 km!
!
1.7 m! !
!
3 mm! !
!
50 µm! !
!
1 µm! !
!
100 nm!
!
10 nm! !
!
1 nm! !
!
0.1 nm = 1Å! !
0.1 pm!!
1022 m
1010 m
107 m
100 m
10-3 m
10-5 m
10-6 m
10-7 m
10-8 m
10-9 m
10-10 m
10-13 m
chemistry
biology
Objects of interest
•
•
•
•
•
•
•
•
•
•
•
•
Galaxy!
!
Solar system!
Planet!
!
Man!
!
Fly! !
!
Cell !
!
Bacterium! !
Virus!
!
Protein!
!
Sugar molecule!
Atom!
!
Electron! !
Donnerstag, 3. Juli 14
!
!
!
!
!
!
!
!
!
!
!
!
106 light years!
light minutes! !
20,000 km!
!
1.7 m! !
!
3 mm! !
!
50 µm! !
!
1 µm! !
!
100 nm!
!
10 nm! !
!
1 nm! !
!
0.1 nm = 1Å! !
0.1 pm!!
1022 m
1010 m
107 m
100 m
10-3 m
10-5 m
10-6 m
10-7 m
10-8 m
10-9 m
10-10 m
10-13 m
Which objects can we see?
•
•
•
•
•
•
•
•
•
•
•
•
Galaxy!
!
Solar system!
Planet!
!
Man!
!
Fly! !
!
Cell !
!
Bacterium! !
Virus!
!
Protein!
!
Sugar molecule!
Atom!
!
Electron! !
Donnerstag, 3. Juli 14
!
!
!
!
!
!
!
!
!
!
!
!
106 light years!
light minutes! !
20,000 km!
!
1.7 m! !
!
3 mm! !
!
50 µm! !
!
1 µm! !
!
100 nm!
!
10 nm! !
!
1 nm! !
!
0.1 nm = 1Å! !
0.1 pm!!
1022 m
1010 m
107 m
100 m
10-3 m
10-5 m
10-6 m
10-7 m
10-8 m
10-9 m
10-10 m
10-13 m
Resolution limit with visible light
Which objects can we see?
•
•
•
•
•
•
•
•
•
•
•
•
Galaxy!
!
Solar system!
Planet!
!
Man!
!
Fly! !
!
Cell !
!
Bacterium! !
Virus!
!
Protein!
!
Sugar molecule!
Atom!
!
Electron! !
Donnerstag, 3. Juli 14
!
!
!
!
!
!
!
!
!
!
!
!
106 light years!
light minutes! !
20,000 km!
!
1.7 m! !
!
3 mm! !
!
50 µm! !
!
1 µm! !
!
100 nm!
!
10 nm! !
!
1 nm! !
!
0.1 nm = 1Å! !
0.1 pm!!
1022 m
1010 m
107 m
100 m
10-3 m
10-5 m
10-6 m
10-7 m
10-8 m
10-9 m
10-10 m
10-13 m
Structural methods
in molecular cell biology
light microscopy
AFM
NMR
x-ray crystallography
electron microscopy
0.1nm=1Å 1nm
atoms
10nm
proteins
small
molecules
Donnerstag, 3. Juli 14
100nm
1µm
10µm
bacteria
viruses
cells
100µm
1mm
organisms
10mm
Part 1:
Electron optics
Donnerstag, 3. Juli 14
Microscopy with electrons
Donnerstag, 3. Juli 14
Microscopy with electrons
Donnerstag, 3. Juli 14
Microscopy with electrons
• Electrons are energy-rich elementary particles
Donnerstag, 3. Juli 14
Microscopy with electrons
• Electrons are energy-rich elementary particles
• Electrons have much shorter wavelength than x-rays
(~ 3 pm = 3 x 10-12 m for 100kV electrons)
Donnerstag, 3. Juli 14
Microscopy with electrons
• Electrons are energy-rich elementary particles
• Electrons have much shorter wavelength than x-rays
(~ 3 pm = 3 x 10-12 m for 100kV electrons)
• Resolution not limited by wavelength!
Donnerstag, 3. Juli 14
Microscopy with electrons
• Electrons are energy-rich elementary particles
• Electrons have much shorter wavelength than x-rays
(~ 3 pm = 3 x 10-12 m for 100kV electrons)
• Resolution not limited by wavelength!
• but by comparatively poor quality of magnetic lenses
and radiation damage
Donnerstag, 3. Juli 14
Microscopy with electrons
• Electrons are energy-rich elementary particles
• Electrons have much shorter wavelength than x-rays
(~ 3 pm = 3 x 10-12 m for 100kV electrons)
• Resolution not limited by wavelength!
• but by comparatively poor quality of magnetic lenses
and radiation damage
• High vacuum is essential - no live specimens!
Donnerstag, 3. Juli 14
Electron microscopes
300 kV
Donnerstag, 3. Juli 14
120 kV
The transmission
electron microscope
camera
Donnerstag, 3. Juli 14
The transmission
electron microscope
electron gun
camera
Donnerstag, 3. Juli 14
The transmission
electron microscope
electron gun
condenser
camera
Donnerstag, 3. Juli 14
The transmission
electron microscope
electron gun
condenser
objective lens
camera
Donnerstag, 3. Juli 14
The transmission
electron microscope
electron gun
condenser
objective lens
camera
projector lenses
Donnerstag, 3. Juli 14
The transmission
electron microscope
electron gun
condenser
objective lens
camera
projector lenses
projection chamber
Donnerstag, 3. Juli 14
The transmission
electron microscope
electron gun
condenser
objective lens
camera
projector lenses
projection chamber
Donnerstag, 3. Juli 14
vacuum
pump
The transmission
electron microscope
electron gun
condenser
objective lens
camera
projector lenses
projection chamber
viewing screen
Donnerstag, 3. Juli 14
vacuum
pump
The transmission
electron microscope
electron gun
condenser
objective lens
camera
projector lenses
projection chamber
viewing screen
camera
Donnerstag, 3. Juli 14
vacuum
pump
The transmission
electron microscope
electron gun
condenser
objective lens
specimen
projector lenses
projection chamber
viewing screen
camera
Donnerstag, 3. Juli 14
camera
vacuum
pump
The
transmission
electron
microscope
electron source
specimen
objective lens
diffraction plane
image plane
focus plane
Donnerstag, 3. Juli 14
The
transmission
electron
microscope
electron source
specimen
objective lens
diffraction plane
image plane
focus plane
Donnerstag, 3. Juli 14
Electron sources
Thermionic emitters
Tungsten filament: emits electrons at ~ 3000 °C (melts at 3380 °C)
Large source size, poor coherence of electron beam
LaB6 crystal: single crystal, emits electrons at ~ 2000 °C
Electrons are emitted from crystal tip -> smaller source size, better coherence
Energy spread ΔE ~ 1 - 2 eV, depending on temperature
Field emitters
Oriented tungsten single crystal, tip radius ~ 100 nm
Small source size -> high coherence of electron beam, high brilliance
Requires very high vacuum (10 -11 Torr)
Electrons extracted from crystal by electric field applied to tip (extraction voltage)
Schottky emitter: Zr plated, heated to ~ 1200 °C to assist electron emission and
prevent contamination, energy spread ΔE ~0.5 eV
Cold field emitter: not heated, very low energy spread, best temporal coherence,
but contaminates easily (frequent ‘flashing’ with oxygen gas)
Donnerstag, 3. Juli 14
Coherence
tungsten filament
field emission tip
incoherent electron beam
coherent electron beam
temporal coherence: all waves have the same wavelength
(they are monochromatic)
spatial coherence: all waves are emitted from the same
point source (as in a laser)
Donnerstag, 3. Juli 14
Electrons: particles or waves?
According to the dualism of elementary particles in quantum
mechanics, electrons can be considered as particles or waves.
Both models are valid and used in electron optics.
Electrons can be regarded as particles to describe scattering.
The wave model is more useful to describe diffraction,
interference, phase contrast and image formation.
Donnerstag, 3. Juli 14
Electron parameters
− 31
Rest mass
m 0 = 9.1091x10
Charge
Kinetic energy
Rest energy
Q = −e = − 1.602x10 C
− 19
E = eU ,1eV = 1.602x10 Nm
E0 = m0c 2 = 511keV = 0.511MeV
Velocity of li ght
Planck’s constant
c = 2.9979x10 ms −1
−34
h = 6.6256x10 Nms
Non-relativistic (E << E0 )
Relativistic (E ~ E 0 )
Mass
m = m0
m = m0 (1 − v 2 / c2 )
Energy
E = eU =
kg
−19
8
1
2
m 0v
2
−1 / 2
mc 2 = m0 c2 + eU = E 0 + E
m = m0 (1 + E / E0 )
1/ 2
Velocity
v = (2 E / m0 )
Momentum
p = m 0v = ( 2m 0E )
v = c [1−
1/ 2
−1 / 2
h
de Brogli e wavelength λ = = h (2 m0 E )
p
1
(1 + E / E0 )
2
] 1/ 2
p = mv = [ 2m 0 E (1 + E /2 E0 )]
1
2 1 /2
= ( 2 EE0 + E )
c
λ = h [2m 0 E(1+ E / 2 E0 )]
2
= hc ( 2 EE0 + E ) −1 / 2
Donnerstag, 3. Juli 14
−1/2
1/2
Electrons in an electrostatic (Coulomb) field
The force produced by an electrostatic field E on a particle of (negative) charge e- is
F = -eE
This means that the electron is accelerated towards the anode.
The kinetic energy E [eV] of the electron after passing through a voltage U [V] is
E = eU
The wavelength of an electron moving at veolicty v (de Broglie wavelength) is
λ = h/mv
where h is Planck’s constant, m the rest mass of the electron. Both the mass and the
velocity of the electron are energy dependent. Relativistic treatment is necessary for
acceleration voltages > 80 kV.
Electron beams are monochromatic except for a small thermal energy spread arising from
the temperature of the electron emitter.
Donnerstag, 3. Juli 14
de Broglie wavelength
acceleration
voltage
100 kV
velocity
1.64 x 108 m/s
wavelength
3.7 pm = 0.037 Å
200 kV
2.5 pm = 0.025 Å
300 kV
2.0 pm = 0.02 Å
Donnerstag, 3. Juli 14
Resolution limit in crystallography
Reciprocal space!
Highest possible resolution:
1/d = 2/λ
d = λ/2
θ = 90°
Donnerstag, 3. Juli 14
Resolution limit
Diffraction (Rayleigh) limit: ~ 0.5 λ
• ~150 nm = 1,500 Å for visible light
• 0.5 Å for x-rays
• 0.01 Å = 1 pm for 300 kV electrons
Donnerstag, 3. Juli 14
The
transmission
electron
microscope
electron source
specimen
objective lens
diffraction plane
image plane
focus plane
Donnerstag, 3. Juli 14
Electron-­‐specimen interactions
Incident beam of energy E
hν
E-ΔE
E-ΔE
Z=0
Z=t
E
E E -ΔE
E
elastic
Donnerstag, 3. Juli 14
E -ΔE
inelastic
Elastic and
inelastic
scattering cross
sections for
electrons, x-rays
and neutrons
R. Henderson,
Quart. Rev. Biophys. 1995
Donnerstag, 3. Juli 14
Electron scattering factors
Large elastic cross section
• ~106 higher than for x-­‐rays
high signal per scattering event
… but even larger inelastic cross section
• σinel/σel ≈ 18/Z
high radiation damage, especially for light atoms, e.g. C: 3 electrons scattered inelastically per elastic event
Good ratio of elastic/inelastic scattering
• 1000 times better than for 1.5 Å x-­‐rays
Donnerstag, 3. Juli 14
carbon
Considerations for biological specimens
• Biological specimens consist mainly of light atoms (H, N, C, O), which suffer most from radiation damage
Donnerstag, 3. Juli 14
Considerations for biological specimens
• Biological specimens consist mainly of light atoms (H, N, C, O), which suffer most from radiation damage
• This makes it essential to minimize the electron dose to about ~25 e/Å2 for single-­‐particle cryoEM
Donnerstag, 3. Juli 14
Considerations for biological specimens
• Biological specimens consist mainly of light atoms (H, N, C, O), which suffer most from radiation damage
• This makes it essential to minimize the electron dose to about ~25 e/Å2 for single-­‐particle cryoEM
• Low electron dose means low image contrast
Donnerstag, 3. Juli 14
The
transmission
electron
microscope
electron source
specimen
objective lens
diffraction plane
image plane
focus plane
Donnerstag, 3. Juli 14
Electrons in a magnetic field
Lorentz force on a charge e- moving with velocity v in a magnetic field B
(vectors are bold):
F = -e (v x B)
The direction of F is perpendicular on v and B. v, B, and F form a right-handed system
(right-hand rule, where v = index finger, B = middle finger and c = thumb)
In a homogenous magnetic field, if
v = 0 then F = 0
v is perpendicular to B: the electron is forced on a circle with a radius
depending on the field strength |B|
v is parallel to B: no change of direction
Note that unlike the electric field, the magnetic field does not change the energy of the
electron, i. e. the wavelength does not change!
Donnerstag, 3. Juli 14
Electromagnetic field
Passing a current through a coil of wire produces a
strong magnetic field in the centre of the coil. The
field strength depends on the number of windings
and the current passing through the coil.
Donnerstag, 3. Juli 14
Electromagnetic Lens
Pole pieces of soft iron
concentrate the magnetic field
Donnerstag, 3. Juli 14
Electromagnetic Lens
Pole pieces of soft iron
concentrate the magnetic field
Donnerstag, 3. Juli 14
Electromagnetic Lens
Donnerstag, 3. Juli 14
Donnerstag, 3. Juli 14
Magnification steps
60x
EM grid
2mm x 2mm
Donnerstag, 3. Juli 14
Magnification steps
60x
600x
EM grid
grid square with
holey carbon film
2mm x 2mm
20 µm x 20 µm
Donnerstag, 3. Juli 14
Magnification steps
60x
6,000x
600x
EM grid
grid square with
holey carbon film
hole
2mm x 2mm
20 µm x 20 µm
2µm x 2µm
Donnerstag, 3. Juli 14
Magnification steps
60x
6,000x
600x
60,000x
EM grid
grid square with
holey carbon film
hole
FAS in vitreous
buffer
2mm x 2mm
20 µm x 20 µm
2µm x 2µm
0.2 µm x 0.2 µm
Donnerstag, 3. Juli 14
The
transmission
electron
microscope
electron source
specimen
objective lens
diffraction plane
image plane
focus plane
Donnerstag, 3. Juli 14
Electron diffraction
d
2θ
diffraction angle
Bragg’s law: nλ = 2d sinθ
Donnerstag, 3. Juli 14
Electron diffraction
d
2θ
diffraction angle
Bragg’s law: nλ = 2d sinθ
Donnerstag, 3. Juli 14
Interference
constructive interference
superposition
1st wave
2nd wave
Donnerstag, 3. Juli 14
destructive interference
Elastic scattering by atoms (Rayleigh scattering)
n is an integer:
scattered waves in phase,
constructive interference
n is not an integer:
scattered waves out of phase,
destructive interference
Bragg’s law: nλ = 2d sinθ
Donnerstag, 3. Juli 14
2D crystals of LHC-II
Kühlbrandt, Nature 1984
Donnerstag, 3. Juli 14
Electron diffraction pattern:
amplitudes, no phases
3.2 Å
Donnerstag, 3. Juli 14
The image is generated
by interference of the
direct electron beam with
the diffracted beams
Donnerstag, 3. Juli 14
Part 2:
Image formation
Donnerstag, 3. Juli 14
The
transmission
electron
microscope
electron source
specimen
objective lens
diffraction plane
image plane
focus plane
Donnerstag, 3. Juli 14
Electron-­‐specimen interactions
Incident beam of energy E
hν
E-ΔE
E-ΔE
Z=0
Z=t
E
E E -ΔE
E
elastic
Donnerstag, 3. Juli 14
E -ΔE
inelastic
Contrast mechanisms
electron wave
Image
no interaction
modified amplitude, unchanged phase
amplitude object
amplitude contrast
Donnerstag, 3. Juli 14
phase contrast
phase object
shorter wavelength within object
modified phase
modified phase, unchanged amplitude
Origin of the phase shift
The potential V(x,y,z) experienced by the scattered electron upon passing through a sample of thickness t causes a phase shift
t
Vt (x, y) =
ψincident
∫ V (x, y,z)dz
0
The vacuum wavelength λ of the electron changes to λ` within the sample:
V(x,y,z)
ψexit
Donnerstag, 3. Juli 14
€
€
€
h
λ=
2meE
€
λ" =
h
2me(E + V (x, y,z))
When passing through a sample of thickness dz, the electron experiences a phase shift of:
€
dz dz (how many times does λ fit into the thickness dz?)
dϕ = 2π ( − ) (by how many degrees out of 2π = 360° does λ$ λ
this change the phase φ?)
π
dϕ =
V (x, y,z)dz = σV (x, y,z)dz
λE
The weak phase approximation
As we have seen, the phase shift is proportional to the projected potential of the specimen:
ϕ = σ ∫ V (x, y,z)dz = σVt (x, y)
The potential V of the specimen shift modifies the phase of the incident plane wave ψincident to:
€
ψincident
Ψexit = Ψincident e −iϕ = Ψincident e −iσVt
For Vt<<1 and thus φ<<2π as for thin biological specimens:
V(x,y,z)
€
i =e
i π2
= cos( π2 ) + isin( π2 )
Ψexit = Ψincident e −iϕ
≈ Ψincident (1 − iϕ) = Ψincident − iΨincidentϕ = Ψincident − iΨscattered
€
ψexit
€
àFor thin biological specimens there is a linear relation between the transmitted exit wave function and the projected potential of the sample:
Ψexit ≈ Ψ
!incident
"# (1 − iϕ) = 1 − iϕ = 1 − iσVt
≡1(background )
Donnerstag, 3. Juli 14
Taylor series
Any function can be approximated by a finite number of polynomial terms
∞
à ∑
n =0
f (n ) (a)
(x − a) n
n!
à
à
e x ≈ 1+ x +
à
e −iϕ ≈ 1 − iϕ +
€
€
€
x3 x5 x7
+
− + O(x n )
3! 5! 7!
sin(x) ≈ x −
€
Donnerstag, 3. Juli 14
x2 x3
+ + O(x n )
2! 3!
ϕ2 ϕ3
− i + O(ϕ n )
2!
3!
≈ 1 − iϕ if φ << 1 !
taken from Wikipedia...
Taylor series
Any function can be approximated by a finite number of polynomial terms
∞
à ∑
n =0
f (n ) (a)
(x − a) n
n!
à
à
e x ≈ 1+ x +
à
e −iϕ ≈ 1 − iϕ +
€
€
€
x3 x5 x7
+
− + O(x n )
3! 5! 7!
sin(x) ≈ x −
€
Donnerstag, 3. Juli 14
x2 x3
+ + O(x n )
2! 3!
ϕ2 ϕ3
− i + O(ϕ n )
2!
3!
≈ 1 − iϕ if φ << 1 !
taken from Wikipedia...
Phase contrast
exit wave = scattered wave + unscattered wave imaginary
Scattered wave is 90° out of phase with unscattered wave. Ψexit = ψunscattered + iψscattered
exit wave
real
Vector notation. Vector length shows amplitude (not drawn to scale) Donnerstag, 3. Juli 14
Cosine wave notation (amplitudes not drawn to scale)
Phase contrast
exit wave = scattered wave + unscattered wave A perfect lens in focus gives minimal phase contrast
à
Donnerstag, 3. Juli 14
Positive phase contrast
Phase contrast
exit wave = scattered wave + unscattered wave A perfect lens in focus gives minimal phase contrast
à Positive phase contrast
Since ψscattered = φψunscattered with φ << 1:
ψscattered << ψunscattered
Iimage= |ψexit|2 =| ψunscattered + iψscattered|2 ≈ |ψunscattered|2 = Iincident
Donnerstag, 3. Juli 14
Phase contrast
exit wave = scattered wave + unscattered wave Ψexit = ψunscattered + iψscattered
exit wave
Minimal contrast
Maximal contrast
Defocus phase contrast
Minimal contrast
Lens aberrations cause an additional phase shift that generates phase contrast
Donnerstag, 3. Juli 14
Lens aberrations
Spherical aberration
Donnerstag, 3. Juli 14
Chromatic aberration
Defocus generates an additional
phase shift
In a perfect lens, the number of
Image plane
Perfect lens
Donnerstag, 3. Juli 14
wavelengths from object to focal
point is the same for each ray,
independent of scattering angle
(Fermat’s principle)
Defocus generates an additional
phase shift
In a perfect lens, the number of
Image plane
Perfect lens
wavelengths from object to focal
point is the same for each ray,
independent of scattering angle
(Fermat’s principle)
Lens with spherical
aberration
Image plane
Donnerstag, 3. Juli 14
Defocus generates an additional
phase shift
In a perfect lens, the number of
Image plane
Perfect lens
wavelengths from object to focal
point is the same for each ray,
independent of scattering angle
(Fermat’s principle)
Lens with spherical
aberration
Image plane
f1
Donnerstag, 3. Juli 14
Defocus generates an additional
phase shift
In a perfect lens, the number of
Image plane
Perfect lens
wavelengths from object to focal
point is the same for each ray,
independent of scattering angle
(Fermat’s principle)
Lens with spherical
aberration
Image plane
f2 f1
Donnerstag, 3. Juli 14
Defocus generates an additional
phase shift
In a perfect lens, the number of
Image plane
Perfect lens
wavelengths from object to focal
point is the same for each ray,
independent of scattering angle
(Fermat’s principle)
Lens with spherical
aberration
Image plane
Spherical aberration
causes a path length
difference χ which
depends on the scattering
angle
Donnerstag, 3. Juli 14
f2 f1
χ=
e.g.
3λ/2
Depending on its phase shift, the scattered wave reinforces or weakens the exit wave
exit wave = scattered wave + unscattered wave Ψexit = ψunscattered + iψscattered
scattered and unscattered wave are in phase:
exit wave gets stronger
scattered wave is shifted by π/2 = 90° relative to unscattered wave:
exit wave is nearly same as unscattered wave, therefore phase contrast is minimal
scattered and unscattered wave are out of phase by π = 90°: exit wave gets weaker
Donnerstag, 3. Juli 14
Optimal (Scherzer) focus
The phase shift χ(θ) introduced by the spherical aberration Cs of the
objective lens depends on the scattering angle θ and on the amount of
defocus Δf.
!
χ(θ) = (2π/λ) [Δf θ2/2 - Cs θ4/4]
The spatial frequency R (measured in Å -1) is the reciprocal of the distance
between any two points of the specimen. For small scattering angles,
R ≈ θ / λ. With this approximation, the phase shift expressed as a function of
R is
χ(R) = (π/2) [2Δf R2 λ - Cs R4 λ3]!
(Scherzer formula)
At Scherzer focus, the terms containing Δf and Cs nearly add up to 1, and a
positive phase shift of χ ≈ +π/2 applies to a wide resolution range.
Donnerstag, 3. Juli 14
Defocus and spherical aberration have similar but opposite effects
Donnerstag, 3. Juli 14
Contrast transfer
in
exact focus
Scherzer focus
high underfocus
(Erikson and Klug, 1971)
Donnerstag, 3. Juli 14
The contrast transfer function
(CTF)
The phase Contrast Transfer Function B(θ) of the electron microscope
is defined as
!
B(θ) = -2 sin χ(θ)
For any particular defocus Δf, the CTF indicates the range of scattering
angles θ in which the object is imaged with positive (or negative) phase
contrast.
For scattering angles where CTF = 0, there is no phase contrast.
As spherical aberration Cs is constant, Δf can be adjusted to produce
maximum phase contrast of ±π/2 for a particular range of scattering
angles.
Donnerstag, 3. Juli 14
Fourier transforms of amorphous carbon film images
underfocus
FT
Donnerstag, 3. Juli 14
underfocus
FT
Fourier transforms of amorphous carbon film images
underfocus
FT
underfocus
FT
Contrast Transfer Function, CTF
Donnerstag, 3. Juli 14
CTF as a function of defocus
Movie by Henning Stahlberg, UC Davis
Donnerstag, 3. Juli 14
CTF as a function of defocus
Movie by Henning Stahlberg, UC Davis
Donnerstag, 3. Juli 14
The
transmission
electron
microscope
electron source
specimen
objective lens
diffraction plane
image plane
focus plane
Donnerstag, 3. Juli 14
Film image
Janet Vonck, Deryck Mills
Donnerstag, 3. Juli 14
DQE of direct electron detectors
DQE = SNR2o/SNR2i
counting mode,
super-resolution
McMullan, Faruqi and Henderson; http://arxiv.org/pdf/1406.1389.pdf
Donnerstag, 3. Juli 14
CCD vs. direct detector
300 kV electrons
50 µm
Scintillator
Fiber optics
CCD chip
-35°C
Separate vacuum
conventional
CCD detector
Peltier cooler
Falcon-II direct
electron detector
Richard Henderson, Greg McMullan (MRC-LMB Cambridge, UK)
Donnerstag, 3. Juli 14
CCD vs. direct detector
300 kV electrons
50 µm
Scintillator
Fiber optics
CCD chip
4000 x 4000 14 µm pixels
read out 17 times per second
-35°C
Separate vacuum
conventional
CCD detector
Peltier cooler
Falcon-II direct
electron detector
Richard Henderson, Greg McMullan (MRC-LMB Cambridge, UK)
Donnerstag, 3. Juli 14
Fast readout overcomes drift
3.36 Å
Frame displacement
in Å
Matteo Allegretti, Janet Vonck, Deryck Mills
Donnerstag, 3. Juli 14
Science, 28 March 2014
Donnerstag, 3. Juli 14
Science, 28 March 2014
Science, 28 March 2014
Donnerstag, 3. Juli 14
Science, 28 March 2014