Download 3. Capacitance II

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Introduction to gauge theory wikipedia , lookup

History of electromagnetic theory wikipedia , lookup

Path integral formulation wikipedia , lookup

Electromagnetism wikipedia , lookup

Lorentz force wikipedia , lookup

Aharonov–Bohm effect wikipedia , lookup

Electric charge wikipedia , lookup

Maxwell's equations wikipedia , lookup

List of unusual units of measurement wikipedia , lookup

Field (physics) wikipedia , lookup

Electrostatics wikipedia , lookup

Transcript
PHYSICS 505: CLASSICAL ELECTRODYNAMICS HOMEWORK 1
3
c) We are to determine the capacitance of two concentric conducting cylinders of length L with
radii a and b where b > a.
If we chose a Gaussian region that completely encloses one the inner cylinder, then the
surface integral of the electric field will give E · A where E is the magnitude of the
electric field and A = 2πrL, the area of the boundary of the region.
Using Gauss’ law, was see that the surface integral is equal to the total charge contained
within the region divided by ²0 . Specifically, we have that
Q
Q
E · 2πrL =
=⇒ E =
,
²0
2π²0 Lr
where a < r < b and Q is the charge on one of the cylinders.
The magnitude of the voltage difference between the two cylinders is equal to the line
integral of the electric field from one to the other. Specifically,
µ ¶
Z b
Z b
Q
dr
Q
b
∆V =
Ed` =
=
log
.
2π²0 L a r
4π²0
a
a
Therefore, using the definition of capacitance, we see that
2π²0 L
¡ ¢.
∴C=
log ab
3. Capacitance II
We are to approximate the capacitance per unit length of two parallel, cylindrical conductors
with radii a1 and a2 which are separated by a distance d.
Let us work within the coordinate system such that the center of the first cylinder, with
radius a1 , is located at r = 0 and the second cylinder, with radius a2 , is located at
r = d.
Because the electric field is linear, we can consider the field caused by each of the
conductors separately. Specifically, for points between the two cylinders, we can add
the electric fields produced by each cylinder separately. We can determine the electric
field per unit length induced by each cylinder by imagining a Gaussian region that
completely encloses a unit length of either cylinder. Therefore, for a point collinear
with the centers of each cylinder, we have that
Q
Q
E=
+
.
2π²0 r 2π²0 (d − r)
The magnitude of the voltage difference between the two cylinders is equal to the line
integral of the electric field from one to the other. Specifically,
¶
Z d−a2 µ
Q
1
1
∆V =
+
dr,
2π²0 a1
r
d−r
· µ
¶
µ
¶¸
Q
d − a2
a2
=
log
− log
,
2π²0
a1
d − a1
µ
¶
(d − a2 )(d − a1 )
Q
log
,
=
2π²0
a1 a2
µ 2 ¶
Q
d
≈
log
,
2π²0
a1 a2
µ
¶
Q
d
=
log √
.
π²0
a1 a2
Therefore, using the definition of capacitance per unit length, we see that
π²
³ 0 ´.
∴C≈
log √ad1 a2