* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Math 40 1.1 - 1.3 Class-work Name: Date: 1. Translate to an
Mathematics of radio engineering wikipedia , lookup
History of Grandi's series wikipedia , lookup
Positional notation wikipedia , lookup
Bra–ket notation wikipedia , lookup
Law of large numbers wikipedia , lookup
Proofs of Fermat's little theorem wikipedia , lookup
Location arithmetic wikipedia , lookup
Series (mathematics) wikipedia , lookup
Elementary arithmetic wikipedia , lookup
Math 40 1.1 - 1.3 Class-work Name: Date: 1. Translate to an algebraic expression. (a) The sum of x and 8 is 12. (b) The product of 9 and y is greater than 27. (c) The product of 4 and a is less than or equal to the difference of a and 16. (d) The quotient of 12 and x is equal to the sum of x and 7. 2. Expand and multiply. (a) 33 (b) 72 (c) 24 (d) 25 (e) 104 (f) 82 (g) 112 (h) 53 3. Use the rule for order of operations to simplify each expression. (a) 48 ÷ 12 · 2 (b) 48 − 12 + 17 (c) 8 + 2(5 + 3) (d) 5 + 2(3 · 4 − 1) + 8 (e) 3 + 12 ÷ 3 + 6 · 5 (f) 34 + 42 ÷ 23 − 52 (g) 2 · 103 + 3 · 102 + 4 · 10 + 5 (h) 4[7 + 3(2 · 9 − 8)] 4. Find the next number in each sequence. (a) 1, 4, 9, 16... (b) 2, 2, 4, 6... 5. Write each fraction as an equivalent fraction with denominator 36. (a) 1 3 (b) 7 9 6. Fill in the missing numerator so the fractions are equal. (a) 5 = 9 63 (b) 3 = 4 24 7. For each of the following numbers, give the opposite, the reciprocal, and the absolute value. 11 (a) 5 (b) − 3 8. Place on of the symbols < or > between each of the following to make the resulting statement true. (a) −3 (c) − 3 2 −8 − 3 4 (b) | − 5| (d) 5 12 −| − 5| 11 25 9. Simplify each expression. (a) 10 − |7 − 2(5 − 3)| (b) 15 − |8 − 2(3 · 4 − 9)| − 10 10. Multiply the following. (a) 9 4 · 2 3 1 (b) 12 6 11. Simplify. (a) −32 + 7 (b) −12 + (−8) (c) 17 + (−8) (d) 15 − (−20) 12. Simplify. (a) −3 + (−2) + [5 + (−7)] (b) 12 − (−7 − 10) − 15 (c) 30 − [−(12 − 4) − 8] − 3 (d) 3 · 62 − 2 · 32 − 8 · 62