* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download TestCracker CAT Quant
Survey
Document related concepts
Transcript
CAT|ByAshankDubey(100%ilerofCAT15) TESTCRACKERCATTOPPER’sPROGRAM:QUANT Factorial Theproductofnconsecutivenaturalnumbersstartingfrom1toniscalledasthefactorial‘n’. n!=1x2x3x4x5x6x7x……x(n–2)x(n–1)xn e.g.5!=1x2x3x4x5=120;6!=1x2x3x4x5x6=720 F 0!=1and1!=1 F n!alwaysendswithzeroifn≥5 F Theproductofnconsecutivenaturalnumbersisalwaysdivisiblebyn!,wheren!=1×2×3×4× 5….×n 1. Given𝒇 𝒙 = 𝒙 ×𝒇 𝒙 − 𝟏 foranynaturalnumber′𝒙′:if 𝒇(𝒙 + 𝟐) = 𝟐𝟎𝒇 𝒙 ,thenwhatisthevalue of𝒙? (a)4 (b)5 (c)2 (d)Noneofthese Solution:Asweknow,n!=n(n–1)!.Thegivenfunctioncanbeassumedtobethefactorialfunction. 𝑓 𝑥 = 𝑥 ×𝑓 𝑥 − 1 𝑓 𝑥 + 2 = (𝑥 + 2) ×𝑓 𝑥 + 1 𝑓 𝑥 + 2 = (𝑥 + 2) (𝑥 + 1)×𝑓 𝑥 ………….(1) 𝑓(𝑥 + 2) = 20𝑓 𝑥 {Giveninthequestion,comparethisequationwithequation(1)} (𝑥 + 2) 𝑥 + 1 =20⇒ (𝑥 + 2) 𝑥 + 1 =5x4⇒𝑥=3.Thereforetheansweris(d). 2. Ifnisanoddnaturalnumber,whatisthehighestnumberthatalwaysdividesn×(n2–1)? (a)6 (b)12 (c)24 (d)Noneofthese 2 Solution:n×(n –1)=(n–1)×n×(n+1),whichisaproductofthreeconsecutivenumbers.Sincenis odd,thenumbers(n–1)and(n+1)arebotheven.Astheyaretwoconsecutiveevennumbersoneof these numbers will be a multiple of 2 and the other will be a multiple of 4. Hence, their product is a multiple of 8. Since one out of every three consecutive numbers is a multiple of 3, one of the three numberswillbeamultipleofthree.Hence,theproductofthreenumberswillbeamultipleof8×3= 24. Hence,thehighestnumberthatalwaysdividesn×(n2–1)is24. 3. Findthesumofallvaluesofnwhichsatisfy 𝒏! 𝟐 𝟒! + 𝟕! × 𝟓! 𝟒 × 𝟒! =240 𝒏! 𝟒! Solution:Letn!=k.Taking4!offbothsidesandsimplifying,weget k2+(7!x5!)(4!/4)=240x(4!)k ⇒k2–5!x2x4!k+7!x5!x3! ⇒k2–5!x48k+7!x5!x6 ⇒k2–5!x48k+7!x6! [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) ⇒k2–5!x(6+42)k+7!x6! [Attention:Whyarewesplitting48into6+42above?Becausewewanttheabovequadraticequationto beoftheformx2-(a+b)x+ab] ⇒k2–5!x6k–5!x6x7k+7!x6! ⇒k2–6!k–7!k+7!x6! ⇒k2–(6!+7!)k+7!x6! ⇒k=6!and7!⇒n=6and7 ⇒Sum=13 4. Whatistheremainderif(2n)!isdividedby(n!)2? (a)0 (b)2 (c)4 (d)1 Solution:(2n)!=1×2×3×4×…×(n–1)×n×(n+1)×…×2n=(n)!×(n+1)×(n+2)×…×2n.Since(n +1)×(n+2)×…×2nisaproductofnconsecutivenumbers,itisdivisiblebyn!.Hence,theproduct(n)! ×(n+1)×(n+2)×…×2nisdivisiblebyn!×n!=(n!)2.Theremainderthereforeis0. Type1:HighestPowerofaNumberinaFactorial Supposewehavetofindthehighestpowerofkthatcanexactlydividen!,wedividenbyK,nbyK ! ,n ! byK ! …..andsoontillweget tox)andthenaddupas ! ! + !! ! !! equalto1(where,[x]meansthegreatestintegerlessthanorequal + ! !! +……..+ ! !! Examples 1. Whatisthelargestpowerof5in121!? Solution: !"! ! + `"#" !! =24+4=28.(Wecannotdoitfurthersince121islessthan5! =125) Hence,5isinvolved28timesasafactorin121! 2. Whatisthelargestpowerof2thatcandivide269!? Solution: !"# ! + !"# !! + !"# !! + !"# !! + !"# !! + !"# !! + !"# !! + !"# !! =134+67+33+16+8+4+2+1=265. Thusthegreatestpowerof2is265thatcandivideexactly268!. TestCrackerTrick:Now,youmusthavenoticedthatweconsideronlyintegralvaluesofthequotient as[q]whichgivesanintegerjustlessthanorequaltoq.Sowecandothiscalculationinaslightly easiermanner.Herewejustdividethegivennumberandthensucceedingquotientswillbedivided by the same remainder as in case of successive division. So, we solve previous problem in this manner. [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) Sowecanseethatthismethodofcalculationiseasiersinceweneednotknowthevaluesof2! ,2! ,2! , ……,2! etc.Alsothedivisionby2iseasierthanthedivisionby2 ! ,where𝑥isanylargeinteger. 3. Whatisthelargestpowerof7thatcanexactlydivide780!? Solution: Thusthehighestpowerof7is128bywhich777!canbedivided. 4. Whatisthehighestpowerof72in100!? Solution: Since our method is applicable only for the prime factors, we solve it by breaking 72 in its primefactors. 72=2! × 3! .Therefore,weneedtofindthehighestpowerof2! and 3! in72!. 72=8x9.Sincetomakea8weneed2x2x2i.e.threetimes.Soweneedtodivide97by3andget32. And,for9weneed3x3i.e.twotimes.Soweneedtodivide48by2andget24. So 2!" x3!" ⇒8!" x9!" Thusthelargestpowerof72is24.Thatcanexactlydivide100! [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) 5. Whatisthehighestpowerof81thatcandivide1802!? Solution:81=3! So, Thusweget3 .Butweneedtofindoutfor 3! . Therefore3!"# = 3! !!" x 3! = 81 !!" x3 Thereforethelargestpowerof81is224whichcandivideexactly1802! !"# Type2:Numberofzeroesattheendoftheproductofnumbers Weknowthat10=2x5,100=2! x5! ……etc.Sowecansaythat"𝑛"numberofzeroesattheendofthe productweneedexactly"𝑛"combinationsof“5x2” F Thenumberofzeroesattheendoftheproductdependsupon2x5,buttheconditionisthat (a) 𝟐𝒙 x𝟓𝒚 gives𝒙numberofzeroesif𝒙<y (b) 𝟐𝒙 x𝟓𝒚 gives𝒚numberofzeroesify<𝒙 Examples 1. Whatisthenumberofzeroesattheendof10!? Solution:10!=1x2x3x4x5x6x7x8x9x10. Itisobviousfromtheaboveexpressionthatthereareonlytwo5’sandeight2’s.Sincethenumberof5’s arelessthannumberof2’s,thenumberof5’swillbeeffectivetoformthecombinationof‘2x5’.Thus thereareonly2zeroesattheendof10! 2. Findthenumberofzeroesattheendof100!? (a)24 (b)97 (d)23 (d)Noneofthese Solution:Sinceweknowthatthezeroesattheendofanyproductareduetothepresenceof10asthe factoroftheproductandthenumberofzeroesdependsuponthenumberoftimes10isinvolved. [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) Sothereare24combinationsof2x5:itmeanstherewillbe24zeroesattheendof100! (Needtocheckfor5only,sinceithassmallerpower.) 3. Findthenumberofzeroesattheendoftheproductoffirst100multiplesof10. (a)1000 (b)24 (b)100 (c)124 Solution:(10x20x30x40x……………………..x1000) =10!"" [1x2x3x4x…………………x100] =10!"" [100!] Asweknowfrompreviousexample,highestpowerof5in100!is24. Numberofzeroes=100+24=124. 4. Howmanynaturalnumbers‘n’arethere,suchthat‘n!’endswithexactly30zeroes? (a)0 (b)1 (c)3 (d)4 Solution: Accordingtoquestion,n!shouldhave30zeroesintheend.Ifn=100(takingrandomlykeepinginview 30isthenumberofzeroes] 100!has !"" ! + !"" !! =24,Sonshouldbegreaterthan100.Nextmultipleof5is105.But105=5x21, hasonlyoneextra5.Numberofzeroeswillincreaseby1only.Similarly110,115and120alsohaveone extra5.Numberofzeroes(from120!to124!)=28.Now,thenextmultipleof5is125and125contains three5’s.So,numberofzeroeswillincreaseby3.Numberofzeroesin125!=28+3=31.So,thereisno factorialofanumberwhichendswith30zeroes. 5. n!hasxnumberofzeroesattheendand(n+1)!has(x+3)zeroesattheend.1≤n≤1000.Howmany solutionsarepossiblefor‘n’? (a)8 (b)7 (c)1 (d)4 Solution: We can see that increasing the natural number by 1, we are gathering 3 more powers of 5. Therefore, (n + 1) is a multiple of 125 but not a multiple of 625 as it would result in 4 powers of 5. Therefore,(n+1)willbeequaltoallthemultiplesof125minus625. Totalnumberofmultiplesof125lessthan1000=8 Totalnumberofmultiplesof625lessthan1000=1 Therequiredansweris(8–1)=7 [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) 6. Ifn!and(4n)!endwith25zeroesand106zeroesrespectively,thenwhichofthefollowingisafactor ofn? (a)25 (b)26 (c)27 (d)28 Solution: Step1: Accordingtothequestionn!has25zeroesattheend. Hereyouhavetotryabittoknowtherangeofn.Ifn=100(takingrandomlykeepinginview26isthe numberofzeroes] 100!has !"" ! + !"" !! =24,Sonshouldbegreaterthan100. Next multiple of 5 is 105. But 105 = 5 x 21, has only one 5. Number of zeroes will increase by 1 only. From105to109,thereisnomultipleof5.So,therangeofnisinbetween105to109. Step2: Asthenextconditionis(4n)!has106zeroesintheend.Forgettingtheactualvaluejustverifythevalue ofnwithintherange{105to109}.Youwillgetn=108.108=4x27.Therequiredanswer=27. 7. If146!Isdivisibleby𝟔𝒏 thenfindthemaximumvalueofn. (a)74 (b)70 (c)76 (d)75 Solution:Initscurrentformthequestionlooksintimidating.Butisit? Wesimplyneedtofindthehighestpowerof6containedin146! 6=2x3.As3isthelargestprimefactorof6,wewillfindthehighestpowerof3in146! Thehighestpowerof3in146!=48+16+5+1=70 8. Thenumber2006!iswritteninbase22.Howmanyzeroesarethereattheend? (a)450 (b)500 (c)199 (d)200 Solution:Beforewecometotheexactquestion,letusquicklygetafeelofhowtochangebasesquickly TestCrackerTrick:Anumberwritteninbase10canbeconvertedtoanybasebbyfirstdividingthe numberbybandthendividingthesuccessivequotientsbyb.Theremainderthusobtained,written inreverseorder,giventheequivalentnumberinbaseb. Let’sconvert 63 !" tobase7 63 = 120 !" ! There is exactly one zero at the end of the number converted to base 7 because the number 63 is divisibleonceby7i.e.thehighestpowerof7containedinthenumber63isexactlyequalto1.63=3! 7! [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) Similarly, if we convert 56 to base 2 then there will be exactly three zeroes at the end of converted number in base 2 because the highest power of 2 contained in 56 is exactly equal to three i.e. the number56isdivisiblethriceby2. Comingbacktoourquestion:Here,thenumberofzeroespresentattheendof2006!inbase22willbe equal to the number of times 22 divides 2006! completely. Therefore, we need to find the highest powerof22containedin2006! 22=2x11.As11isthelargestprimefactorof22.Wewillfindthehighestpowerof11containedin 2006! Therefore,ouranswerhastobe[2006/11]+[2006/112]+[2006/113]=199 9. 30!whenexpressedinbase12endswithkzeroes.Findk (a)12 (b)13 (c)14 (d)Noneofthese ! Solution:12=2 x3 Thehighestpowerof2! in30!= !"!!!!!! ! = !" ! =13 Thehighestpowerof3in30!=10+3+1=14 Asthehighestpowerof2! islessthanthatof3,thehighestpowerof12in100!Isequaltothatof2! . Hence,k=13. Type3:FactorialOfaNumberContainingHighestPower(DifferentBase) Let,z(n)bethenumberofzeroespresentattheendofn!inbaseb.Therefore,thehighestpowerofb contained in n! is z(n). The base b = 2! x 3! x 5! x…… where a, b, c, …denote the power of prime numbers contained in base b. Let p be the largest prime factor of base b. So, the highest power of p containedinn!isz(n). z(n)= ! !! ! + z(n)= 𝑛 + ! z(n)xp=𝑛 + ! !! ! + !! ! !! ! !! + + + ! !! ! !! ! !! + + +…….+ ! !! ! !! + + ! !! ! !! ! !! + …….+ + …….+ ! !(!!!) ! !(!!!) (approximately) (approximately) z(n)xp–n=z(n) n=(p–1)xz(n) TestCrackerTrick: Foragivenz(n),thesmallestvalueofanaturalnumbernsuchthattherearez(n)zeroespresentat theendofn!inbasebcanbecalculatedapproximatelyasn=(p–1)xz(n),wherez(n)denotesthe numberofzeroespresentattheendofn!inbasebandpisthelargestprimefactorofbaseb. 10. Findtheleastvalueofnsuchthatn!hasexactly2394zeroes Solution:Here,z(n)=2394.n=(5-1)x2394=9576(approximately) [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) 11. 12. 13. 14. [Herethelargestprimefactorofthebase(10)is5] Let’scountthenumberofzeroespresentattheendof9576!=1915+383+76+15+3=2392 To get more zeroes, we will have to find the second least multiple of five greater than 9576 and it is 9585.Thenumberofzeroespresentattheendof9585!=1917+383+76+15+3=2394.Hence,n= 9585. Note:Increaseinnumberofzeroesdependsonwhethergivennumberismultipleof5,25,125,625…… Findthesmallestpositiveintegernsuchthatn!isamultipleof𝟏𝟎𝟐𝟎𝟎𝟗 . Solution:Itmeansthatfindthesmallestnaturalnumber“n”suchthatn!hasatleast2009zeroesatthe end.n=(5-1)x2009=8036(approximately) Thenumberofzeroespresentattheendof8036!=1607+321+64+12+2=2006 Here,numberofzeroesarethreelessthanrequired.So,wehavetolookforthirdmultipleof5greater than8036. Therequiredmultipleof5is8050.Thenumberofzeroespresentattheendof8050!=1610+322+64 +12+2=2010.Therefore,8050!has2010trailingzeroes.Hence,8050!istheleastmultipleof10!""# n!has100trailingzeroesinbase35.Findtheminimumvalueofn. Solution:Here,Base=35=5x7.As7isthelargestprimefactorof35.z(n)=100. n=(p–1)xz(n)=6x100=600(approximately) Let’scountthenumberofzeroespresentattheendof600!inbase35. Thenumberofzeroespresentattheendof600!Inbase35=Numberoffactorsof7in600! =85+12+1=98 Togettwomorezeroes,wewillhavetofindthesecondleastmultipleof7greaterthan600. 600=85x7+5.Therefore,therequiredmultipleof7is{600+(7–5)+7}=609. What is the smallest n such that n! ends in exactly 91 zeroes in base 91 Solution:Here,Base=91=7x13.As13isthelargestprimefactorof91.z(n)=91. n=(p–1)xz(n)=12x91=1092(approximately) Let’scountthenumberofzeroespresentattheendof1092!inbase91. Thenumberofzeroespresentatendof1092!Inbase91=84+6=90 Togetmorezeroeswewillhavetofindtheleastmultipleof13greaterthan1092.1092=84x13 Therefore,thenextmultipleof13is1092+(13)=1105. The number of zeroes present at the end of 1105! In base 91 = 85 + 6 = 91 Hence,n=1105. Find the number of possible values of n = 125 x m if n is less than or equal to 1000 and m is not divisibleby5. Solution:n=5! xm,wheremisnotdivisibleby5i.e.thehighestpowerof5inthenumbernisexactly equaltothree. Thehighestpowerof5containedin1000!=200+40+8+1. [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) 8 and 1 are representing here number of numbers less than 1000 and divisible by 5! and 5! respectively. Hence,therequiredanswer=(8–1)=7. [Sincemisnotamultipleof5,weknowthatnisnotdivisibleby54] 15. Thequotientobtainedbydividingnby121andthenumber11areco–primetoeachother.Findthe numberofpossiblevaluesofnifnislessthanorequalto10,000. Solution: It means that the highest power of 11 contained in the number n is exactly equal to two. Thehighestpowerof11containedin10,000!=909+82+7 82–7=75. Hence,thenumberofpossiblevaluesofnis75. 16. n!has𝒙numberofzeroesattheendand(n+1)!has(𝒙+3)zeroesattheend.Findthenumberof possiblevaluesofnifnisathreedigitnumber. Solution:Thehighestpowerof5inn!is𝑥.Howmanyzeroeswe’llgetattheendof(n+1)!dependson whether(n+1)isamultipleof5! ,5! , 5! ,5! ,……andsoon.Here(n+1)!has(𝑥+3)zeroesattheend. Thereforethehighestpowerof5inthenumber(n+1)isexactlyequalto3. 5! x1=125 5! x2=250 5! x3=375 5! x4=500 5! x6=750 5! x7=875 5! x8=1000 Thehighestpowerof5in5! x5is4,that’swhy,weignoreit.Hence,thepossiblevaluesofn=7. [Note:1000isn+1,thereforen,whichis999willbeathreedigitnumber] Type4:LastNon–Zerodigit/digitsinafactorial Findthelastnon–zerodigitofn!:Lastnon–zerodigitof(tenconsecutiveintegers) Let’stakea10–tupleoftenconsecutiveintegersstartingfrom(10a+1)to(10a+10).Lastnon–zero digitoftheirproductcanbewrittenas: =(10a+1)(10a+2)(10a+3)(10a+4)(10a+5)(10a+6)(10a+7)(10a+8)(10a+9)(10a+10) =(10a+1)(10a+2)(10a+3)(10a+4)5(2a+1)(10a+6)(10a+7)(10a+8)(10a+9)5(2a+2) =(10a+1)(10a+2)(10a+3)2(5a+2)5(2a+1)2(5a+3)(10a+7)(10a+8)(10a+9)5(2a+2) =100(10a+1)(10a+2)(10a+3)(5a+2)(2a+1)(5a+3)(10a+7)(10a+8)(10a+9)(2a+2) =100(2a+1)(2a+2)(10a+1)(10a+2)(10a+3)(5a+2)(5a+3)(10a+7)(10a+8)(10a+9) {Now,wecanremovebothzeroes} [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) =Lastnon–zerodigitof(2a+1)(2a+2)(1)(2)(3)(7)(8)(9)(5a+2)(5a+3) =Lastnon–zerodigitof4{25a(a+1)+6}(2a+1)(2a+2) =4xLastnon–zerodigitof(2a+1)(2a+2) Examples 1. Whatisthelastnon–zerodigitof20! Solution:Usingabovepropertywecanwrite: 1x2x3x4x5x6x7x8x9x10=4x remainder ! ×! !" [Here,a=0] 11x12x13x14x15x16x17x18x19x20=4x remainder ! !×! !" [Here,a=1] Solastnon–zerodigitof20!=4 xlastnon–zerodigitof4!=lastnon–zerodigitof6x4=4 TestCrackerTrick: F LNZ(10n!)=LNZ(𝟒𝒏 )xLNZ(2n!) 2. Whatisthelastnon–zerodigitof100! Solution:Lastnon–zerodigitof100!=LNZ(10x10!)=LNZ(4!" )xLNZ(20!) LNZof410isthesameasLNZof42,whichis6 Fromtheaboveexample,weknowlastnon–zerodigitof20!,whichis4.LNZ(100!)=LNZ(6x4)=4 3. Findthelastnon–zerodigitof125! Solution:125isnotamultipleof10;hencewecanapplytheabovesamemethodupto120!andthen multiplytheresultwithlastnon–zerodigitoftheproductofremainingnumbersi.e.121to125. So,thelastnon–zerodigitof125!=LNZ(125!)=LNZ(4!" )xLNZ(24!)xLNZ(121x122x123x124x125) =LNX(6x4! )xLNZ(4!)xLNZ(21x22x23x24)xLNZ(121x61x123x31)=LNZ(6x4x4x3)=8. LASTTWODIGITSINAFACTORIAL Withtheuseofaboveconcept,wecandirectlyderiveformulaforthesetypesofquestions. Lasttwonon–zerodigitsof(10n!)=Lasttwonon–zerodigitsof(44! )xLasttwonon–zerodigitsof (2n!) TestCrackerTrick: F LTNZ(10n!)=LTNZ(𝟒𝟒𝒏 )xLTNZ(2n!) Examples 1. Whatisthelasttwonon-zerodigitsof100! (a)44(b)36(c)76(d)64 Solution:Lasttwodigitsof100!=4410xlasttwonon-zeroof20! =220x1110x442xlasttwonon-zerodigitsof4! =76x01x36x24=76x01x64=64;Option(d) (Note:if210powerisoddweget24asthelasttwodigits,ifevenweget76). [email protected]+919035001996 CAT|ByAshankDubey(100%ilerofCAT15) 2. Whatisthelasttwonon–zerodigitsof500! (a)64 (b)44 (c)36 (d)Noneofthese !" Solution:Lasttwonon–zerodigitsof500!=44 xlasttwonon–zerodigitsof100! =Lasttwonon–zerodigitsof76x01x64=64 3. Howmanyzeroesarepresentattheendof25!+26!+27!+28!+30! Solution:Let’sfindlasttwonon-zerodigitsof20!=442xlasttwonon-zerodigitsof4! =36x24=64 Lasttwonon-zerodigitsof25!=25x24x23x22x21xlasttwonon-zerodigitsof20! =25x24x23x22x21x64 Lasttwonon–zerodigitsof25!=84 25!+26!+27!+28!+30!=25!(1+26+26x27+26x27x28+26x27x28x30) =25!(1+26+x02++y56+z80) =84000000xx65 =a0,000,000 Hence,givenexpressionhas7zeroes. [email protected]+919035001996