* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Forces: An Intro
Fictitious force wikipedia , lookup
Electromagnetism wikipedia , lookup
Fundamental interaction wikipedia , lookup
Classical central-force problem wikipedia , lookup
Mass versus weight wikipedia , lookup
Centripetal force wikipedia , lookup
Centrifugal force wikipedia , lookup
An Introduction to Forces: Student Learning Goal The student will analyse, in quantitative terms, the forces acting on an object, and use free-body diagrams to determine net force on the object in one and two dimensions. An Introduction to Forces A Definition A force is a push or a pull. A Definition A force is a push or a pull. It is a vector quantity and is symbolized by: A Definition A force is a push or a pull. It is a vector quantity and is symbolized by: F A Definition A force is a push or a pull. It is a vector quantity and is symbolized by: F In the SI system, force is measured in Newtons (N). 1 N = 1 kg m/s2 Applied Force Applied Force is a general term FA for any contact force, e.g. Applied Force Applied Force is a general term FA for any contact force, e.g. Tension FT or T Applied Force Applied Force is a general term FA for any contact force, e.g. Tension FT or T Friction Ff or Ffr Applied Force Applied Force is a general term FA for any contact force, e.g. Tension FT or T Friction Ff or Ffr Normal Force FN Tension Tension is the force exerted by strings, ropes, cables, etc. attached to an object. Tension Tension is the force exerted by strings, ropes, cables, etc. attached to an object. The tension along the string is constant. Friction Friction acts to oppose any (attempted) motion. Friction Friction acts to oppose any (attempted) motion. Static friction: the force that prevents a Fs stationary object from starting to move Friction Friction acts to oppose any (attempted) motion. Static friction: the force that prevents a stationary object from starting to move Kinetic friction: the force that acts against an object’s motion Fs Fk Friction Friction acts to oppose any (attempted) motion. Static friction: the force that prevents a stationary object from starting to move Kinetic friction: the force that acts against an object’s motion Air resistance (drag): friction on an object moving through air Fs Fk Fair Friction Friction acts to oppose any (attempted) motion. Static friction: the force that prevents a stationary object from starting to move Kinetic friction: the force that acts against an object’s motion Air resistance (drag): friction on an object moving through air (many physics problems with neglect this) Fs Fk Fair Normal Force The normal force acts to keep objects apart. Normal Force The normal force acts to keep objects apart. i.e. if you push on a wall, the wall will exert a normal force on your hand that prevents your hand from pushing through the wall. Action-at-a-Distance Forces There exist forces for which contact between objects is not necessary. These forces are called action-at-adistance forces. Action-at-a-Distance Forces There exist forces for which contact between objects is not necessary. These forces are called action-at-adistance forces. Action-at-a-Distance Forces There exist forces for which contact between objects is not necessary. These forces are called action-at-adistance forces. One example is gravitational force, the force of attraction between all objects with mass. Fg Action-at-a-Distance Forces There exist forces for which contact between objects is not necessary. These forces are called action-at-adistance forces. One example is gravitational force, the force of attraction between all objects with mass. (The gravitational force the Earth exerts on an object is called its weight.) Fg Free-Body Diagrams Usually an object will have more than one force acting upon it. Free-Body Diagrams Usually an object will have more than one force acting upon it. A free-body diagram (FBD) shows all the forces acting on an object Free-Body Diagrams Usually an object will have more than one force acting upon it. A free-body diagram (FBD) shows all the forces acting on an object – and only the forces acting on the object. Free-Body Diagrams Usually an object will have more than one force acting upon it. A free-body diagram (FBD) shows all the forces acting on an object – and only the forces acting on the object. A representation of the object is drawn in the centre of the diagram Free-Body Diagrams Usually an object will have more than one force acting upon it. A free-body diagram (FBD) shows all the forces acting on an object – and only the forces acting on the object. A representation of the object is drawn in the centre of the diagram and the forces acting on it are drawn as arrows pointing outwards. Free-Body Diagrams Usually an object will have more than one force acting upon it. A free-body diagram (FBD) shows all the forces acting on an object – and only the forces acting on the object. A representation of the object is drawn in the centre of the diagram and the forces acting on it are drawn as arrows pointing outwards. The arrows must be labelled! FBD: Example 1 A ball is falling downward through the air. Draw a FBD for the ball. FBD: Example 1 A ball is falling downward through the air. Draw a FBD for the ball. FBD: Example 1 A ball is falling downward through the air. Draw a FBD for the ball. Fg FBD: Example 1 A ball is falling downward through the air. Draw a FBD for the ball. Fair Fg FBD: Example 2 A book is being pushed rightward across a table. Draw a FBD for the book. FBD: Example 2 A book is being pushed rightward across a table. Draw a FBD for the book. FBD: Example 2 A book is being pushed rightward across a table. Draw a FBD for the book. FA FBD: Example 2 A book is being pushed rightward across a table. Draw a FBD for the book. Ff FA FBD: Example 2 A book is being pushed rightward across a table. Draw a FBD for the book. Ff FA Fg FBD: Example 2 A book is being pushed rightward across a table. Draw a FBD for the book. Ff FN Fg FA Net Force FBDs are drawn to help determine the net force (the sum of all forces) acting on an object. Resolve all vertical and horizontal vectors and determine the resultant. FBD: Example 2 with Numbers A book is being pushed across a table with a force of 5 N [right]. The force of friction is 2 N [left], the gravitational force is 10 N [down], and the normal force is 10 N [up]. Find the net force on the book. FBD: Example 2 with Numbers A book is being pushed across a table with a force of 5 N [right]. The force of friction is 2 N [left], the gravitational force is 10 N [down], and the normal force is 10 N [up]. Find the net force on the book. Ff = 2 N FN = 10 N FA = 5 N Fg = 10 N FBD: Example 2 with Numbers A book is being pushed across a table with a force of 5 N [right]. The force of friction is 2 N [left], the gravitational force is 10 N [down], and the normal force is 10 N [up]. Find the net force on the book. Horizontal forces: FA + Ff = 5 N + (- 2 N) = 3 N Vertical forces: Fg + FN = (- 10 N) + (10 N) = 0 The net force Fnet = 3 N [right]