* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Diffusion - QMC - University of Cambridge
Old quantum theory wikipedia , lookup
History of electromagnetic theory wikipedia , lookup
Introduction to gauge theory wikipedia , lookup
Maxwell's equations wikipedia , lookup
History of quantum field theory wikipedia , lookup
Aharonov–Bohm effect wikipedia , lookup
Condensed matter physics wikipedia , lookup
Electromagnetism wikipedia , lookup
Time in physics wikipedia , lookup
Field (physics) wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Linear and non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo Calculations. Paolo Umari CNR CNR-INFM DEMOCRITOS Theory@Elettra Group Basovizza, Trieste, Italy In collaboration with: •N. Marzari, Massachusetts Institute of Technology •G.Galli University of California, Davis •A.J. Williamson Lawrence Livermore National Laboratory Outline Motivations Finite electric fields in QMC with PBCs Results for periodic linear chains of H2 dimers: polarizability and second hyperpolarizability Motivations DFT with GGA-LDA not always reliable for dielectric properties: 0 2 4 6 8 10 12 14 16 18 20 22 24 Ge Si GaAs GaP AlAs 10 m/V AlN 2 12 GaP Expt. DFT-LDA GaAs AlP C Se GaN -100 0 100 200 300 400 500 Motivations… Periodic chains of conjugated polymers,DFT-GGA overestimates: Linear susceptibilities: >~2 times Hyper susceptibilities: > orders of magnitude: importance of electronic correlations Linear and non-linear optical properties of extended systems We want: •Periodic boundary conditions: real extended solids •Accurate many-body description: conjugate polymers •Scalability: large systems Quantum Monte Carlo Diffusion - QMC •Wavefunction as stochastic density of walker •The sign of the wavefunction must be known Y •We have errorbars ….some diffusion-QMC basics •We evolve a trial wave-function into imaginary time: t it ˆ (H E )t 0 Y ( t) e Y ( 0 ) •At large t, we find the exact ground state: lim Y (t)cY 0 t • Usually, importance sampling is used, we evolve f in imaginary time: f(t) (t) TY …need for a new scheme Static dielectric properties are defined as derivative of the system energy with respect to a static electric field for describing extended systems periodic boundary conditions are extremely useful Perturbational approaches can not be (easily) implemented within QMC methods We need: finite electric fields AND periodic boundary conditions the Method: 1st challenge In a periodic or extended system the linear electric potential V ˆ V(x)x is not compatible with periodic boundary conditions x L The many-body electric enthalpy •We don’t know how to define a linear potential with PBCs, but the MTP provides a definition for the polarization: L iGXˆ P Im ln Y e Y G 2 / L 2 •With the N-body operator: iGXˆ e Xˆ xˆ1 xˆ N •A legendre transform leads to the electric enthalpy functional: EY E0 Y PY PU & A.Pasquarello PRL 89, 157602 (02); I.Souza,J.Iniguez & D.Vanderbilt PRL 89, 117602(‘02) R.Resta, PRL 80, 1800 (‘98); R.D. King-Smith & D. Vanderbilt PRB 47, 1651 (‘93) 2nd challenge •We want to minimize the electric enthalpy functional •We need an hermitian Hamiltonian •We obtain a Hamiltonian which depends self-consistently upon the wavefunctions: ˆ iG X L e H ( z ) H Im 0 z 2 ˆ iG X z Y e Y It’s a self-consistent many-body operator ! Iterative maps in the complex plane •For every H(zi) there is a corresponding zi+1 •This define a complex-plane map: f(z) •The solution to the self-consistent scheme and the minimum of the electric enthalpy correspond to the fixed point: f z z •Gives access to the polarization in the presence of the electric field : the solution of our problem 3rd challenge •Without stochastic error an iterative map can lead to the fixed point: z1 z2 z3 z4 z5 •In QMC, at every zi in the iterative sequence is associated a stochastic error .... and solution •We can assume that close to the fixed point, the map can be assumed linear: f (z)azb •The average over a sequence of {zi} provides the estimate for the fixed point •The spread of the zi around the fixed point, 2 depends upon the stochastic error: 1 a 2 {zi} series in complex plane •Electric field: 0.001 a.u., bond alternation 2.5 a.u. •10 iterations of 40 000 time-steps 2560 walkers Implementation: from DFT to QMC First Step (DFT - HF): Hilbert space single Slater determinants: We implemented single-particle electric enthalpy in the quantum-ESPRESSO distribution (publicly available at www.quantum-espresso.org) Second Step (QMC): Wave functions are imported in the CASINO variational and diffusion QMC code, where we coded all the present development (www.tcm.phy.cam.ac.uk/~mdt26/cqmc.html) Validation: H atom •We can compare our scheme with a simple sawtooth potential for an isolated system: polarizability of H atom •Isolated H atom in a saw 4 .52 0 .05 a.u. tooth potential: •Same atom in P.B.C. via our new formulation: Exact: 4 .49 0 .03 a.u. 4.50a.u. The true test: periodic H2 chains 2. a.u. 2.5 a.u. P E 6E 2. a.u.. 2. a.u.. 3. a.u. 4. a.u. 3 Results from quantum chemistry: dependence on correlations Polarizability for 2.5 a.u. bond alternation Polarizabiliy per H2 unit Scaling cost DFT-GGA =144.6 N3,N MP2 =58.0 N5 CCD =47.6 N5 MP4 =53.6 N7 CCSD(T) =50.6 N7 Infinite chain limit; quantum chemistry results need to be extrapolated. B. Champagne & al. PRA 52, 1039 (1995) Results from quantum chemistry: dependence on basis set Second hyper-polarizability for 3. a.u. bond alternation at MP3 and MP4 level Basis set MP3 MP4 (6)-31G 60135±52 56836±49 (6)-311G 64338±37 61868±13 (6)-31G(*)* 65729±59 65776±108 (6)-311G(*)* 73002±49 74683± 54 Infinite chain limit; quantum chemistry results need to be extrapolated. B. Champagne & D.H. Mosley, JCP 105, 3592 (‘96) QMC treatment •2.5,3.,4. a.u. bond alternation •Nodal surface and trial wavefunction from HF •HF wfcs calculated in the presence of electric field Convergence with respect to supercell size Results from HF, 3. a.u. bond alternation 10 units 20 units QC extrapolations 27.8 28.5 28.6 /1000. 57.1 57.1 56.7 We will consider 10-H2 periodic units cells Test on linearity of f(z) • bond alternation 2.5 a.u., electric field 0.003 a.u. • 2560 walkers 120 000 time steps / iteration • 2560 walkers 40 000 time steps / iteration Diffusion QMC results: 3. a.u. bond alternation •We apply electric fields of: 0.003 a.u. , 0.02 a.u. = 27.0 +/- 0.5 a.u. •=26.5 a.u. MP4 From Q.C. extrapolations: •=25.7 a.u. CCSD(T) = 89.8 +/- 6.1 a.u. (*103) From Q.C. extrapolations: •>74.7 a.u.(*103) MP4 Diffusion QMC results: 2.5 a.u. bond alternation •We apply electric fields of: 0.003 a.u. , 0.01 a.u. = 50.6 +/- 0.3 a.u. •=53.6 a.u. MP4 From Q.C. extrapolations: •=50.6 a.u. CCSD(T) = 651.9 +/- 29.9 a.u. (*103) Diffusion QMC results: 4. a.u. bond alternation •We apply electric fields of: 0.01 a.u. , 0.03 a.u. = 16.0 +/- 0.1 a.u. •=15.8 a.u. MP4 From Q.C. extrapolations: •=15.5 a.u. CCSD(T) = 16.5 +/- 0.6 a.u. (*103) Effects of correlation: polarizability 60 50 40 HF 30 DMC 20 10 0 2.5 a.u. 3.0 a.u. 4.0 a.u. Exchange is the most important contribution Effects of correlation: 2nd hyperpolarizability 700000 600000 500000 400000 HF 300000 DMC 200000 100000 0 2.5 a.u. 3.0 a.u. 4.0 a.u. Correlations are important!! Conclusions •Novel approach for dielectric properties via QMC •Implemented via diffusion QMC •Validated in periodic hydrogen chains:very nice agreement with the best quantum chemistry results •PRL 95, 207602 (‘05) Perspectives… •“Linear scaling” •Testing critical cases •understanding polarization effects in DFT •.... Acknowledgments •For the QMC CASINO software: M.D. Towler and R.J. Needs, University of Cambridge •For HF applications: S. de Gironcoli, Sissa, Trieste •For money: DARPA-PROM Importance of nodal surface: from DFT Bond alternation 2.5 a.u. •For 10-H2: DMC= 52.2 +/- 1.3 a.u. GGA= 102.0 a.u. •For 16-H2: DMC= 55.4 +/- 1.2 a.u. GGA= 123.4 a.u. •For 22-H2: DMC= 53.4 +/- 1.1 a.u. GGA= 133.5 a.u. From nodal surface HF: DMC= 50.6 +/- 0.3 a.u. Electronic localization for H2 periodic chain: •Localization spread: 2 L 2 2 2ln z N 4 (Resta & Sorella, PRL ’99) •For GGA-DFT: 4.32a.u. 2 •For DMC-QMC: 2 .44 0 .01 a.u. 2 Finite electric fields in DFT with finite field Si (8atoms 4X4X10kpoints): 14 P 12 .6 (Expt. : 11 .4) 11 1 a.u. 5 . 1422 10 V/m Solution for single particle Hamitonian: Umari & Pasquarello PRL 89, 157602 (’02) Souza, Iniguez & Vanderbilt PRL 89, 117602 (’02) …DFT-Molecular Dynamics with electric fields: •Possible applications: •Static Dielectric properties of liquids at finite temperature, (Dubois, PU, Pasquarello, Chem. Phys. Lett. ’04) •Dielectric properties of iterfaces (Giustino, PU,Pasquarello, PRL’04) •Infrared spectra of large systems •Non-resonant Raman and Hyper-Raman spectra of large systems (Giacomazzi, PU, Pasquarello, PRL’05; PU, Pasquarello, PRL’05) Sampling eiGX in diffusion QMC •eiGX does not commute with the Hamiltonian: we use forward walking •Observable are samples after a projection time t e e N ˆ iG X iGX 'j, t j 1 ,N (Hammond, Lester & Reynolds ’94)