* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture 5
Lunar theory wikipedia , lookup
Negative mass wikipedia , lookup
Coriolis force wikipedia , lookup
Roche limit wikipedia , lookup
Lorentz force wikipedia , lookup
Fictitious force wikipedia , lookup
Equivalence principle wikipedia , lookup
Schiehallion experiment wikipedia , lookup
Introduction to general relativity wikipedia , lookup
Centrifugal force wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Centripetal force wikipedia , lookup
Artificial gravity wikipedia , lookup
Physics 2011 Lecture 5: Gravitation and Applying Newton's Laws Chapter 12: Gravitation • Gravity: Action at a distance Gravitation (According to Newton, Anyway) • Newton determined that amoon / g = 0.000278 • and noticed that RE2 / R2 = 0.000273 amoon g R RE • This inspired him to propose the Universal Law of Gravitation: where G = 6.67 x 10 -11 m3 kg-1 s-2 |FMm |= GMm / R2 Gravity... • The magnitude of the gravitational force F12 exerted on an object having mass m1 by another object having mass m2 a distance R12 away is: F12 G m1 m2 2 R12 m1 F12 F21 m2 R12 • The direction of F12 is attractive, and lies along the line connecting the centers of the masses. Gravity... • Near the Earth’s surface: – R12 = RE • Won’t change much if we stay near the Earth's surface. • i.e. since RE >> h, RE + h ~ RE. h M Em Fg G 2 RE m Fg M RE Gravity... • Near the Earth’s surface... Fg G • So |Fg| = mg = ma – a=g Where: g G ME ME m G 2 m 2 RE RE =g All objects accelerate with acceleration g, regardless of their mass! ME 2 9 . 81 m / s RE2 Example gravity problem: • What is the force of gravity exerted by the earth on a typical physics student? – Typical student mass m = 55kg – g = 9.8 m/s2. – Fg = mg = (55 kg)x(9.8 m/s2 ) – Fg = 539 N Fg • The force that gravity exerts on any object is called its Weight W = 539 N Force and acceleration • Suppose you are standing on a bathroom scale on Earth and it says that your weight is W. What will the same scale say your weight is on the surface of the mysterious Planet X ? • You are told that RX ~ 20 REarth and MX ~ 300 MEarth. (a) 0.75 W (b) 1.5 W (c) 2.25 W E X Solution • The gravitational force on a person of mass m by another object (for instance Mm F G a planet) having mass M is given by: 2 R W X FX Ratio of weights = ratio of forces: WE FE MX m R X2 M m G E2 RE G M X ME 2 WX 1 300 .75 20 WE R E RX 2 Newton’s Third Law: • Forces occur in pairs: FA ,B = - FB ,A. – For every “action” there is an equal and opposite “reaction”. • This is consistent with the discussion of gravitation: m1 m2 F12 F21 R12 F12 G m1 m2 F21 2 R12 Newton's Third Law... • FA ,B = - FB ,A. is true for contact forces as well: Fm,w Fw,m Ff,m Fm,f Particles in Equilibrium (2-D) • A particle is in Equilibrium when the sum of all forces on the body is Zero (FNET = 0) • By Superposition, Equilibrium can be computed for each dimensional component separately ( ΣFx = 0, Σ Fy = 0) Dynamics in 2-D • When a body is not in Equilibrium, a Net Force exists in at least one dimensional component: ΣFi = Finet = mai (Note that the Normal Force, n, is perpendicular to the 15 degree Plane) Friction • The friction force is proportional to the Normal Force: f = μN Static vs. Kinetic Friction • As the names imply, Static friction is present only when a body is not moving with respect to the surface it is contacting. • Kinetic friction is moving friction. • Static friction, representing the force required to ‘break free’ and start movement is generally greater than its Kinetic counterpart. fs > fk Friction in Fluids • At low speeds, f = kV • At high speeds, f = DV2 Dynamics of Angular Motion • In angular motion, the Net Force is in the same direction as the Centripetal Acceleration In UCM, Centripetal Acceleration is the only game at the Fair: