* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Conceptual Physics
Fictitious force wikipedia , lookup
Specific impulse wikipedia , lookup
Atomic theory wikipedia , lookup
Equations of motion wikipedia , lookup
Hunting oscillation wikipedia , lookup
Faster-than-light wikipedia , lookup
Classical mechanics wikipedia , lookup
Surface wave inversion wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Work (thermodynamics) wikipedia , lookup
Mass versus weight wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Matter wave wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Classical central-force problem wikipedia , lookup
IB Physics Review Day 1 Review Read all key terms. Underline all words you are unfamiliar with. Then go back and create a flash card for each term. Use the term in a sentence, define it, or draw a picture for the term. Vocabulary 1. accuracy 2. precision 3. dependent variable 4. independent variable 5. experiment 6. hypothesis 7. model 8. observation 9. scientific law 10. scientific theory 11. unit 12. standard 13. x-axis 14. y-axis 15. slope 16. scalar 17. vector 18. magnitude 19. relative 20. frame of reference 21. distance 22. time 23. direction 24. position 25. rate 26. instantaneous speed 27. average speed 28. displacement 29. velocity 30. acceleration 31. free fall 32. vector 33. scalar quantity 34. vector quantity 35. satellite 36. projectile 37. resultant 38. parabolic path 39. horizontal component 40. vertical component 41. range 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. inertia mass force net force balanced forces friction static equilibrium dynamic equilibrium gravity weight Newton's 1st Law of motion Newton's 2nd Law of motion Newton's 3rd Law of motion air resistance weightlessness terminal velocity normal force fluid action force reaction force momentum impulse elastic collision inelastic collision system law of conservation of momentum energy kinetic energy potential energy gravitational potential energy work mechanical energy law of conservation of energy efficiency fulcrum 77. lever 78. machine 79. mechanical advantage 80. pulley 81. inclined plane 82. centripetal force 83. centrifugal force 84. temperature 85. thermal energy 86. heat 87. conduction 88. convection 89. radiation 90. conductor 91. insulator 92. solid 93. liquid 94. gas 95. condensation 96. evaporation 97. sublimation 98. boiling/vaporization 99. freezing 100. melting 101. kinetic theory of matter 102. thermal equilibrium 103. charge 104. electrical force 105. electrically polarized 106. electrostatics 107. grounding 108. semiconductor 109. superconductor 110. conduction 111. conductor 112. electric field 113. electroscope 114. induction 115. insulator 116. static electricity 117. Coulomb's law 118. capacitor 119. electric potential 120. electrical potential energy 121. voltage 122. Electric current 123. potential difference 124. electric resistance 125. ampere 126. voltage source 127. circuit 128. electrical power 129. Ohm's law 130. parallel circuit 131. series circuit 132. alternating current 133. ammeter 134. direct current 135. electric motor 136. electromagnetic induction 137. generator 138. transformer 139. voltmeter 140. schematic (circuit) diagram 141. oscillation 142. vibration 143. pendulum 144. period 145. frequency 146. natural frequency 147. wave 148. medium 149. reflection 150. refraction 151. interference 152. transverse wave 153. rest position 154. crest 155. trough 156. wavelength 157. amplitude 158. longitudinal wave 159. compression wave 160. compression 161. rarefaction 162. sound 163. intensity 164. pitch 165. resonance 166. forced vibration 167. Doppler effect 168. standing wave 169. node 170. anti-node 171. electromagnetic radiation 172. electromagnetic spectrum 173. photon 174. opaque 175. translucent 176. transparent 177. light 178. pigment 179. retina 180. cone 181. rod 182. polarization 183. reflection 184. angle of incidence 185. normal line 186. angle of reflection 187. refraction 188. angle of refraction 189. index of refraction 190. total internal reflection 191. critical angle 192. diffraction 193. concave 194. convex Kinematics 1. Why is motion considered relative, and what does that mean? 2. Define speed. What is the difference between instantaneous and average speed? 3. What is the equation for speed? What are some possible units for speed? 4. Differentiate between speed and velocity. 5. Define constant velocity. When does an object have constant velocity? 6. Define acceleration. What is the equation for acceleration? 7. How are velocity and acceleration related? 8. Give an example of an object traveling at a constant velocity and accelerating. 9. What are the three ways an object can accelerate? 10. If an object travels at the same speed and the same direction, is the object accelerating? 11. What is free fall and how does it relate to gravity? 12. If an object is in free fall, its _____________________ is constant. 13. What is the value for the acceleration due to gravity? 14. If a ball is thrown up at 10 m/s, what will be the speed of the ball when it’s caught back at the original point of the throw? 15. If you throw a ball straight up, what is the ball’s instantaneous speed at the top of its path? 16. If you throw a ball straight up, what is the ball’s acceleration at the top of its path? 17. How do you calculate the time an object will take to travel a given distance in freefall? 18. How do you calculate the distance an object travels while in freefall? Day 2 IB Physics Review Vectors and Projectile Motion 29. What is a scalar? Give three examples of scalar quantities. 30. What is a vector? Give three examples of vector quantities. 31. Explain how to determine the resultant of two vectors (a) in opposite directions (b) in the same direction, and (c) perpendicular to each other. 32. What is the maximum resultant for a 5-unit vector and a 2-unit vector? the minimum resultant? Draw each set of vectors and the resultant. 33. What is the resultant velocity of a boat going across a river the boat's velocimeter reads 4 m/s West and the river is flowing 3 m/s South? Draw your solution and then use the Pythagorean Theorem to verify the magnitude. 34. Define projectile. Give some examples of projectiles. 35. Draw the path of a projectile. Label the horizontal and vertical velocities at a point going up, at a point going down, and at the top of the path. 36. How are a projectile’s horizontal velocity and vertical velocity related? 37. Which component (horizontal or vertical) of a projectile's velocity does not change if we ignore the air ? 38. At what point in it's flight does a projectile have its minimum resultant speed? 39. Find the resultant speed of a projectile with a horizontal speed of 5 m/s and a vertical speed of 30 m/s. How long will this projectile stay in the air? 40. Identify the relationship of different launch angles with a projectiles range (the horizontal distance traveled.) 41. What is the vertical speed of a horizontally launched projectile two seconds after it is launched? 42. Explain how a satellite orbiting the earth is actually just “falling around the earth.” Newton’s Laws 43. What is inertia? 44. What is Newton’s first law of motion? Does it apply to objects at rest, moving objects, or both? 45. Once an object is moving through frictionless space, how much force is needed to keep it going? 46. How is mass related to inertia? 47. How do you calculate weight? 48. What is the difference between mass and weight? 49. What is the difference between mass and volume? 50. Your mass is 59 Kg, calculate your weight on earth and moon? Would you weigh more on the earth or on the moon? 51. What is friction? 52. What is meant by net force? Draw and label the free body diagram of the four forces. 53. How do you calculate the net force of two objects acting in the same direction? 54. How do you calculate the net force of two objects acting in opposite directions? 55. What is equilibrium and how does one achieve equilibrium? 56. An object weighs 25 N on the earth. A second object weighs 25 N on the moon. Which has the greater mass? 57. What produces acceleration? 58. How is acceleration related to net force? 59. How is acceleration related to mass? 60. If an object moves with a constant velocity, what is the acceleration of the object? What is the net force acting on the object? 61. What is terminal velocity? How is it achieved? What is the acceleration of the object that has reached terminal velocity? 62. In the absence of air resistance, which will hit the ground first if dropped from the same height, a feather or a brick? 63. In the presence of air resistance, which will hit the ground first if dropped from the same height, a feather or a brick? 64. A constant force applied to a constant mass produces a constant ___________________________. 65. If an object moves with a constant velocity (_______________ acceleration), how is the applied force related to the force of friction? 66. A woman hangs from a bar using both of her arms. If she weighs 3000 N, how much force does each arm support? 67. Forces always occur in _________________. 68. A bug splatters against the windshield of a moving car. Compare the force of the bug on the car to the force of the car on the bug. 69. A bug splatters against the windshield of a moving car. Compare the deceleration of the bug to the deceleration of the car. 70. What propels a rocket in the vacuum of space? 71. Two people pull on a rope in a tug-of-war. Each pulls with 600 N of force. What is the tension in the rope? 72. How much (in Newton’s) does a 55 kg box of books weigh? 73. A person weighs 300 N. What is the mass of the person? 74. If you push with 25 N on a 5 kg box across a frictionless surface, how fast will the box accelerate? 75. If you push with 25 N on a 5 kg box and there is a 10 N force of friction, how fast will the box accelerate? 76. A certain net force gives a 10 kg object an acceleration of 9 m/s 2. What acceleration would the same force give a 30 kg object? Day 3 IB Physics Review Impulse Momentum Theorum 77. Distinguish between mass and momentum. Which is inertia and which is inertia in motion? 78. Which has the greater mass, a heavy truck at rest or a rolling skateboard? 79. Distinguish between impact and impulse. Which designates a force and which multiplies force and time? 80. When the force of impact on an object is extended in time, does the impulse increase or decrease? 81. Distinguish between impulse and momentum. Which is force times time and which is inertia in motion? 82. Does impulse equal momentum, or a change in momentum? 83. For a constant force, suppose the duration of impact on an object is doubled. a. How much is the impulse increased? b. How much is the resulting change in momentum increased? 84. In a car crash, why is it advantageous for an occupant to extend the time during which the collision takes place? 85. If the time of impact in a collision is extended by four times, how much does the force of impact change? 86. Why is it advantageous for a boxer to ride with a punch? Why should he avoid moving into an oncoming punch? 87. You are standing on a skateboard. a. When you throw a ball, do you experience an impulse? b. Do you experience an impulse when you catch a ball of the same speed? c. Do you experience an impulse when you catch it and then throw it out again? d. Which impulse is greatest? 88. Why is more impulse delivered during a collision when bouncing occurs than during one when it doesn’t? 89. In terms of momentum conservation, why dies a cannon recoil when fired? 90. What does it mean to say that momentum is conserved? 91. Distinguish between an elastic and an inelastic collision. 92. Imagine that you are hovering next to the space shuttle in earth orbit. Your buddy of equal mass, who is moving at 4 km/hr with respect to the shuttle, bumps into you. If he holds onto you, how fast do you both move with respect to the ship? 93. Is momentum conserved for colliding objects that are moving at angles to one another? Explain. 94. What is the momentum of an 66 lbs bowling ball rolling at 2 m/sec? a. If the bowling ball rolls into a pillow and stops in 0.5 sec, calculate the average force it exerts on the pillow. b. What average force does the pillow exert on the ball? 95. What is the momentum of a 100 lbs carton that slides at 4 m/sec across an icy surface? The sliding carton skids onto a rough surface and stops in 3 sec. Calculate the force of friction it encounters. Energy 96. A force sets an object in motion. When the force is multiplied by the time of its application, we call the quantity impulse, which changes the momentum of that object. What do we call the quantity (force)(distance) and what quantity can this change? 97. Work is required to lift a barbell. How many times more work is required to lift the barbell three times as high? 98. Which requires more work, lifting a 10 kg load a vertical distance of 2 m or lifting a 5 kg load a vertical distance of 4 m? 99. How many joules of work are done on an object when a force of 10 N pushes it a distance of 10 m? 100. How is power increased? 101. In which situation is more power required: Slowly lifting a book bag full of books up the stairs or quickly lifting the same book bag full of books up the same stairs? 102. How much power is required to do 100 J of work on an object in a time of 0.5 sec? How much power is required if the same work is done in 1 sec? 103. What are the two main forms of mechanical energy? 104. If you do 100 J of work to elevate a bucket of water, what is the gravitational potential energy relative to its starting position? What would the gravitational potential energy be if the bucket were raised twice as high? 105. A boulder is raised above the ground so that its potential energy relative to the ground is 200 J. Then it is dropped. What is its kinetic energy just before it hits the ground? 106. Suppose an automobile has 2000 J of kinetic energy. When it moves at twice the speed, what will be its kinetic energy? What’s its kinetic energy at three times the speed? 107. What will be the kinetic energy of an arrow having a potential energy of 50 J after it is shot from a bow? 108. What does it mean to say that in any system, the total energy score stays the same? 109. In what sense is energy from coal actually solar energy? 110. How does the amount of work done on an automobile by its engine relate to the energy content of the gasoline? 111. When you whirl a can at the end of a string in a circular path, what is the direction of the force that acts on the can? What causes that force? 112. Does the force that holds the riders on the carnival ride in Figure 9.1 act toward or away from the center? 113. Explain why there is no actual centrifugal force. Hint: Think Newton's third law and inertia Day 4 IB Physics Review Heat and Thermodynamics 114. Why are there negative numbers on the Celsius temperature scale but no negative numbers on the Kelvin temperature scale? 115. When you touch a cold surface, does cold travel from the surface to your hand or does thermal energy travel from your hand to the surface? Explain. 116. Why can’t you determine if you are running a high temperature by touching your own forehead? 117. Which has a greater amount of internal energy, a titanic iceberg or a cup of hot tea? Explain. 118. When you step out of a swimming pool on a hot, dry day in the Southwest, you feel quite chilly, while you don’t feel as chilly here in the humid Southeast. Why? 119. The human body can maintain its customary temperature of 37 ºC on a day when the temperature is above 40 ºC. How is this done? (more detailed than just “sweat”) 120. A great amount of water vapor changes state to become liquid water droplets in the clouds that form a thunderstorm. Is this a release of energy or absorbing of energy? 121. Melting ice causes the temperature of the surrounding air to ____________? Explain how your answer can be true. 122. It is possible to boil water in a paper cup. Use the heating curve of water to help explain how this is possible. 123. Why is it that you can safely hold your bare hand in a hot oven for a few seconds, but if you momentarily touch the metal insides you’ll burn yourself? 124. Turn an incandescent lamp on and off quickly while you are standing near it. You feel its heat but find that when you touch the bulb, it is not hot. Explain why you felt the heat from it. 125. Heat cannot readily escape a thermos bottle, so hot things inside stay hot. Will cold things inside a thermos bottle likewise stay cold? Explain. 126. Your friend is holding the bottom of a large test tube filled with water. Strangely, your friend decides to place the top half of the test tube over a flame and boil the water in the top half of the tube. Why should you not be real worried about your friend’s hand being burnt? Waves 127. Draw and label a transverse wave. 128. Draw and label a longitudinal wave. 129. Compare and contrast transverse and longitudinal waves. 130. Distinguish between the period and the frequency of a vibration or a wave. How do they relate to one another? 131. Does the medium in which a wave travels move along with the wave itself? Defend your answer with an example. 132. How does the speed of a wave relate to its frequency and wavelength? 133. As the frequency of sound is increased, does the wavelength increase or decrease? Give a mathematical example. 134. How far, in terms of wavelength, does a wave travel in one period? 135. What is the period of a pendulum? 136. If you triple the frequency of a vibrating object, what will happen to its period? 137. While watching ocean waves at the dock of the bay, Otis notices that 10 waves pass beneath him in 30 seconds. He also notices that the crests of successive waves exactly coincide with the posts of the dock that are 5 meters apart. What are the period, frequency, wavelength, and speed of the ocean waves? 138. What types of materials can transmit sound waves? Where does sound travel faster? 139. What happens to the speed of sound in air as the air temperature increases? 140. When a wave source moves toward a receiver, does the receiver encounter an increase in wave frequency, wave speed, or both? 141. Would it be correct to say that the Doppler effect is the apparent change in the speed of a wave due to motion of the source? 142. Distinguish between constructive interference and destructive interference. 143. Is interference a property of only some types of waves or of all types of waves? 144. How can you observe interference in sound waves? 145. What is the beat frequency of two tuning forks, one has a frequency of 440 Hz and the other a frequency of 443 Hz? 146. What causes the refraction of a wave? 147. What happens when a wave is reflected? 148. What causes the diffraction of a wave? 149. Where on a standing wave would you measure the amplitude of the wave? 150. Where on a standing wave is the node? 151. Describe what happens when an object is forced to vibrate at its natural frequency? 152. Use resonance to explain the collapse of the Tacoma Narrows Bridge in 1940. Day 5 IB Physics Review Chapters 32 & 33 - Electrostatics and Electric Fields 153. In terms of attraction and repulsion, how do negative particles affect negative particles? How do negatives affect positives? 154. What happens to electrons in any charging process? 155. Give an example of something charged by friction. 156. Give an example of something charged by simple contact. 157. Give an example of temporarily charging an object by induction. 158. What occurs when we “ground” an object? 159. How does an electrically polarized object differ from an electrically charged object? 160. If you rub an inflated balloon against your hair and place it against a door, by what mechanism does it stick? Explain. 161. What is electrostatic discharge? 162. How can you charge an object negatively by using a positively charged object? 163. How does the magnitude of electrical force between a pair of charged objects change when the objects are moved twice as far apart? Three times as far apart? 164. How does the magnitude of electric force compare between a pair of charged particles when they are brought to half their original distance of separation? To one- quarter their original distance? To four times their original distance? (What law guides your answers?) 165. How does one coulomb of charge compare with the charge of a single electron? 166. How much energy is given to each coulomb of charge that flows through a 1.5-volt battery? 167. We do not feel the gravitational forces between ourselves and the objects around us because these forces are extremely small. Electrical forces, in comparison, are extremely huge. Since we and the objects around us are composed of charged particles, why don’t we usually feel electrical forces? 168. If you put in 10 joules of work to push 1 coulomb of charge against an electric field, what will be its voltage with respect to its starting position? 169. What is the voltage at the location of a 0.0001 C charge that has an electric potential energy of 0.5 J (both measured relative to the same reference point)? 170. Give two examples of common force fields. 171. How is the magnitude of an electric field shown around a charged particle? 172. How is the direction of an electric field shown relative to a charged particle? 173. Why is there no electric field in the middle of a charged spherical conductor? 174. Why is it safe to be in a car when it is struck by lightning? 175. Explain why the charge distribution on a conducting surface is not always uniform. Draw two examples of non-uniform charge distribution. 176. What is the electric field inside each of the conductors you drew in the previous question? Why? 177. Sketch the electric field surrounding two electrons that are 2 cm apart. 178. Describe how a charged particle would gain electrical potential energy. 179. Compare and contrast electrical potential energy and electric potential. 180. Would the electrical potential energy between two protons be similar to the gravitational potential energy of a rock lifted above the earth’s surface? Explain. 181. What are the units for electrical potential or potential difference? What are the units for electric current? What are the units for electrical resistance? 182. Define electric current. 183. Describe the motion of the electrons in a closed electric circuit. 184. Give at least two examples of a voltage source. 185. A wire’s electrical resistance depends on what three things? 186. Why are thick wires rather than thin wires usually used to carry large currents? 187. Why can a bird perch harmlessly on bare high voltage wires? 188. Why is the wingspan of birds a consideration in determining the spacing between parallel wires in a power line? 189. What condition is necessary for the sustained flow of water in a pipe? What analogous condition is necessary for the sustained flow of charge in a wire? 190. Will water flow more easily through a wide pipe or a narrow pipe? Will current flow more easily through a thick wire or a thin wire? 191. True or false and explain: “electrons in a common battery driven circuit travel at about the speed of light” 192. True or false and explain: “the source of electrons in a circuit is the voltage source” 193. If electrons flow very slowly through a circuit, why does it not take a noticeably long time for a lamp to glow when you turn on a distant switch? Electric Circuits 194. What is an electric circuit? 195. If the voltage impressed across a circuit is held constant while the resistance doubles, what change occurs in the current? 196. If the resistance of a circuit remains constant while the voltage across the circuit decreases to half its former value, what change occurs in the current? 197. What is the effect on current in a wire if both the voltage across it and its resistance are doubled? If both are halved? 198. Will the current in a light bulb connected to a 220 V source be greater or less than when the same bulb is connected to a 110 V source? 199. A certain device in a 120 V circuit has a current rating of 20 A. What is the resistance of the device? 200. Will a lamp with a thick filament draw more current or less current than a lamp with a thin filament? 201. In a circuit of two lamps in series, if the current through one lamp is 1 A, what is the current through the other lamp? Defend your answer. 202. If 6 V are impressed across the above circuit and the voltage across the first lamp is 2 V. what is the voltage across the second lamp? Defend your answer. 203. What is a main shortcoming of a series circuit? 204. In a circuit of two lamps in parallel, if there are 6 V across one lamp. What is the voltage across the other lamp? 205. How does the sum of the currents though the branches of a simple parallel circuit compare to the current that flows through the voltage source? 206. Are automobile headlights wired with the rest of the car in parallel or in series? What is your evidence? 207. To connect a pair of resistors so their equivalent resistance will be more than the resistance of either one, should you connect them in series or in parallel? 208. To connect a pair of resistors so their equivalent resistance will be less than the resistance of either one, should you connect them in series or in parallel? 209. Consider a pair of flashlight bulbs connected to a battery. Will they glow brighter connected in series or in parallel? Will the battery run down faster if they are connected in series or in parallel? 210. When a pair of identical resistors is connected in series, which of the following is the same for both resistors: Voltage across each, power dissipated in each, current through each? Do any of your answers change if the resistors are different from each other? 211. When a pair of identical resistors is connected in parallel, which of the following is the same for both resistors: Voltage across each; power dissipated in each; current through each? Do any of your answers change if the resistors are different from each other?