Download Emag Homework old

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Condensed matter physics wikipedia , lookup

Four-vector wikipedia , lookup

Noether's theorem wikipedia , lookup

Electromagnetism wikipedia , lookup

Magnetic field wikipedia , lookup

Density of states wikipedia , lookup

Superconductivity wikipedia , lookup

Magnetic monopole wikipedia , lookup

Field (physics) wikipedia , lookup

Electromagnet wikipedia , lookup

Maxwell's equations wikipedia , lookup

Aharonov–Bohm effect wikipedia , lookup

Electric charge wikipedia , lookup

Lorentz force wikipedia , lookup

Electrostatics wikipedia , lookup

Transcript
Homework Section 1
1) Analytically prove the following. (Do this for arbitrary dimension)
a) The commutative law: A + B = B + A
b) The Associative Law: A + (B + C) = (A+B) + C
c) A + B = C if and only if B = C - A
d) A + 0 = A and A - A = 0
e) Scalar product is commutative [A•B=B•A] and
f) Scalar product is distributive [A•(B+C)=A•B+A•C].
2) Prove that the area of a parallelogram with sides A and B is |A x B|. Note that
the surface area has a direction associated with it.
3) Prove that the volume of a parallelepiped with side A, B and C is A•(B x C).
4) Find the magnitude of the following vectors.
g) (1, 4)
h) (4, 3, 0)
i) (0, -1, 1)
j) (6, 1, 0, -1, 2)
5) Which of the following vectors are unit vectors?
k) (1, 0)
l) (1, 1/2)
m) (1, -1)
n) (1/√2, -1/√2)
o) (1/2, 0, √3/2)
p) (1, 0, 0, 0)
6) Express the vector A = (2, 7) as a linear combination of the vectors:
q) B1 = (2, 4), B2 = (-1, 3).
r) C1 = (4, 4), C2 = (5, 5).
Express the vector A = (2, -1, 3) as a linear combination of the vectors:
s) B1 = (2, 4, 1), B2 = (3, 7, 1).
t) C1 = (1, 0, 0), C2 = (0, 1, 0), C3 = (0, 0, 1).
u) D1 = (2, 4, 1), D2 = (3, 7, 1), D3 = (-1, 2, 2).
7) Show that in a 3-dimensional space, a set of three vectors A, B and C are
linearly independent if and only if
a1 a2 a3
b1
b2
b3  0 ;
c1 c2 c3
(Linear independence requires that: a A + b B + c C = 0 if and only if a, b, c
= 0).
8) Determine if the vector R1 = (2, 4, 1), R2 = (0, 3, -1) and R3 = (2, 1, 1) are
linearly independent.
9) Consider a system of n electric charges, e1 through en. Let ri be the position
vector of charge ei. The dipole moment of the system of charges is defines as
n
p   ei ri
i 1
and the center of the charge of the system is
n
i i
p
R
n
e
i
i 1
e r

i 1
n
e
i
i 1
where
n
e
i 1
i
0
The system is called neutral is
n
e
i 1
i
0
v) Show that the dipole moment of a neutral system is independent of the origin.
w) Express this moment in terms of the centers of the systems of negative and
positive charges making up the original system.
10) Find the scalar product of the following vectors.
x) (2, 3)•(1, -1)
y) (4, 1)•(6, -5)
z) (1, 2, -3)•(-1, 1, 2)
aa) (2, 4)•(1, 5, 3)
bb) (0, sin, 1, 3)•(2, 4, -2, 1)
cc) (sin(t), cos(t))•( sin(t), cos(t))
11) Find the angles that the vector (2, 4, -5) makes with the coordinate axes.
12) Find the projection of the vector (2, 5, 1) on the vector (1, 1, 3).
13)
dd) Using the dot product, prove the law of cosines.
ee) Let U1 and U2 be two vectors in the x-y plane with angles  and  between U1
and x and U2 and x. Using the dot product show that cos(-) =
cos()cos()+sin()sin()
14) Determine the value of  such that A and B are perpendicular and C and D
are perpendicular.
ff) A = (2, 3, 1), B = (4, 2, 4)
gg) C = (2, 4, 3, 1), D = (, 2, -1, 2)
15) Let A = (-1, 2, 4), B = (3, 2, 7). Find the unit vector perpendicular to the
plane determined by A and B.
16) The force F = (2, 3, 1) is applied to an object which move along a vector r =
(1, 4, 1). What is the work done?
17) Determine the magnitude, phase angle, real and imaginary parts of the
following
1) 3+i
2) 3
3) 3ei2/3
4) 2(cos (/6) +i sin (/6))
5) 345°
18) A Force F = 2i - 3j + k acts at the point (1, 5, 2). Find the torque due to F
about
6) The origin
7) The y axis
8) The line x/2=y/1=z/(-2)
Del operator questions
19) Find the gradient of w=x2y3z at (1, 2, -1)
20) Find the gradient of
Compute the divergence and the curl of each of the following Vector Fields.
ˆ
21) r  z ˆi  y ˆj  x k
22) r  x2 ˆi  y2 ˆj  z2 kˆ
2
Calculate the Laplacian   of each of the following
2
2
23) x  y
24) x 2  y 2  z 2 
1/ 2

25) For r  x 2  y2  z 2
1
r̂
  2
r
r

1/2
, Prove
ˆ , evaluate    r     r̂ .
26) For r  x ˆi  y ˆj  z k
 
r
Divergence, Stokes and Green’s Theorem Problems
27) Evaluate the integral  x 2  y2 dx  2xydy along each of the following


paths from (0,0) to (1,2)
hh) y = 2x2
ii) x = t2, y = 2t
jj) y = 0, for x = 0 -> 1 and then x = 1 for y = 0 -> 2.
28) Evaluate the integral
 xydx  x dy  along each of the following paths –
each path.
kk) a) (0,0) to (1,2)
ll) b) (0, 0) to (3, 0) to (1,2).
29) Determine if the following force fields are conservative. Then determine a
scalar potential for each field.
mm)
F  ˆi   zˆj   ykˆ
2
nn) F  z sinh yˆj  2z cosh y kˆ
30) Which, if either, of the following force fields is conservative? Calculate the
work done moving a particle around a circle of x = cos t, y = sin t in the x-y
plane.
oo) F  y ˆi  x ˆj  z kˆ
pp) F  yˆi  x ˆj  zkˆ
Explain why you have gotten these answers.
31) In spherical coordinates, show that the electric field E of a point charge is
conservative. Determine and write the electric potential  in rectangular
(cartesian) and cylindrical coordinates. Find E   using both cartesian
and cylindrical coordinates and show that the results are the same as in
spherical coordinates.
32) Derive
 P(x,y)
dx  
c
A
P(x, y)
dxdy using methods similar to that used in
y
class.
33) Evaluate
 x dy  xydx, around the curve (1, 0) to (4, 0) to (4, .5) along
2
c
y  1 x to (1, 1).
34) For a simple closed curve C in a plane show by Green’s theorem that the area
enclosed is A  12  xdy  ydx .
c
35) Find the area inside the curve x  a cos, y  bsin , 0    2 .
Evaluate the following three problems using either a surface or a volume integral,
whichever is easier.
x
36)    Vd ; V 
2
y
2
x ˆi  yˆj, over the volume bounded by x2 + y2 ≤
V
4, 0 ≤ z ≤ 5. (Remember the top and bottom!)
37)  V  nd ; V  x ˆi  yˆj  zkˆ , over the surface of the cone with base
A
2
x  y  16 and vertex at (0,0,3).
38)    Fd ; F  x 3  y2 y ˆi  y 3  2y 2  yx ˆj  z 2 1kˆ , over the unit
2


V
cube in the first octant.
Using either Stoke’s Theorem or the Divergence Theorem evaluate each of the
following.
39)  V  nd ; V  2xy ˆi  y 2 ˆj  z  xy kˆ , where  is a tin can defined by
A
x2 + y2 ≤ 9, 0 ≤ z ≤ 5. (Remember the top and bottom!).
40)  (  V)  nd ; V  x  x 2z ˆi  yz 3  y 2  ˆj  x 2y  xz kˆ , where  is
A
any surface with a bounding curve entirely in the x-y plane.
41)  (  V)  nd ; V  x 2 y ˆi  xz kˆ , where  is the closed surface of the
A
ellipsoid
1 = x2/4 + y2/9 + z2/16.
Electro and Magneto static point source
42) Determine the electric potential of a point charge from the electric field
q r̂
E
4 r 2
43) Determine the magnetic potential of a current element.
 dI  r̂
B
4 r 2
44) Need to add A cross B = magnitude times sin of angle
Homework Section 2
Static electric fields using Coulomb’s Law – notice that symmetry is
lacking in most of these problems.
Line charges
(These might approximate what you would find on a line if it were exposed to an
external charge. Also note that these represent – as best I can tell – all of the
possible problems of this form that one can solve analytically.)
1) Use cylindrical coordinates to calculate the electric field in the x-y plane for a line
charge where the charge density is
l  0
2) Use cylindrical coordinates to calculate the electric field in the x-y plane for a line
charge where the charge density is
z a
 0

l   1
z a
 0 z

3) Use cylindrical coordinates to calculate the electric field in the x-y plane for a line
charge where the charge density is
z a
 0

l  
1
z a
 0 z 2

4) Use cylindrical coordinates to calculate the electric field in the x-y plane for a line
charge where the charge density is
z a
 0

l  
1
z a
 0 z 3

5) Use cylindrical coordinates to calculate the electric field in the x-y plane for a line
charge where the charge density is
z a
 0

l  
1
z a
 0 z m

6) Use cylindrical coordinates to calculate the electric field in the x-y plane for a line
charge where the charge density is
z a
 z
l   0
z a
 0
7) Use cylindrical coordinates to calculate the electric field in the x-y plane for a line
charge where the charge density is
 z 2 z  a
l   0
z a
 0

Surface charges
(These might approximate what you would find on a surface if it were exposed to an
external charge. Again note that these represent – as best I can tell – all of the
possible problems of this form that one can solve analytically.)
8) Use cylindrical coordinates to calculate the electric field on the z-axis for a surface of
charges on the x-y plane where the charge density is
 s  0
9) Use cylindrical coordinates to calculate the electric field on the z-axis for a surface of
charges on the x-y plane where the charge density is
 0 r  a

s   1
 0 r r  a
10) Use cylindrical coordinates to calculate the electric field on the z-axis for a surface of
charges on the x-y plane where the charge density is
ra
 0

s   1
 0 r 2 r  a
11) Use cylindrical coordinates to calculate the electric field on the z-axis for a surface of
charges on the x-y plane where the charge density is
ra
 0

s   1
 0 r 3 r  a
12) Use cylindrical coordinates to calculate the electric field on the z-axis for a surface of
charges on the x-y plane where the charge density is
ra
 0

s   1
 0 r m r  a
13) Use cylindrical coordinates to calculate the electric field on the z-axis for a surface of
charges on the x-y plane where the charge density is
 r r  a
s   0
 0 ra
14) Use cylindrical coordinates to calculate the electric field on the z-axis for a surface of
charges on the x-y plane where the charge density is
 0 r 2 r  a
s  
ra
 0
Static electric fields using Gauss’ Law – notice the symmetry in these
problems.
15) Use cylindrical coordinates to calculate the electric field in the x-y plane for a line
charge where the charge density is
l  0
16) Use cylindrical coordinates to calculate the electric field on the z-axis for a surface of
charges on the x-y plane where the charge density is
 s  0
Cylindrical Volume charges
(These might approximate what you would find in a volume of a material. Under
some conditions it might be an insulator with charges distributed around the
volume, in others it might be a wire (or two) with charge carriers near surfaces.)
17) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 r  a
v   0
- in cylindrical coordinates
0 ra
18) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 1
ra

v   0 r
- in cylindrical coordinates
 0
ra
19) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 1
ra

v   0 r 2
- in cylindrical coordinates

ra
 0
20) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 1
ra

v   0 r m
- in cylindrical coordinates

ra
 0
21) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 r r  a
v   0
- in cylindrical coordinates
 0 ra
22) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
0 r 2 r  a
v  
- in cylindrical coordinates
ra
 0
23) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
0 r m r  a
v  
- in cylindrical coordinates
ra
 0
24) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
0

v   0 a  r  b - in cylindrical coordinates
0
br

25) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
 0

v   0 r a  r  b - in cylindrical coordinates
 0
br

26) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
 0
 m
v   0 r a  r  b - in cylindrical coordinates
 0
br

27) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
 0
 1
v   0
a  r  b - in cylindrical coordinates
 r
br
 0
28) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
 0
 1
v   0 m a  r  b - in cylindrical coordinates
 r
br
 0
Spherical Volume charges
(These might approximate what you would find in a volume of a material. Under
some conditions it might be an insulator with charges distributed around the
volume.)
29) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 r  a
v   0
- in spherical coordinates
0 ra
30) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 1
ra

v   0 r
- in spherical coordinates

ra
 0
31) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 1
ra

v   0 r 2
- in spherical coordinates
 0
ra
32) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 1
ra

v   0 r m
- in spherical coordinates

ra
 0
33) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 r r  a
v   0
- in spherical coordinates
 0 ra
34) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
 r 2 r  a
v   0
- in spherical coordinates
ra
 0
35) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
0 r m r  a
v  
- in spherical coordinates
ra
 0
36) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
0

v   0 a  r  b - in spherical coordinates
0
br

37) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
 0

v   0 r a  r  b - in spherical coordinates
 0
br

38) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
 0
 m
v   0 r a  r  b - in spherical coordinates
 0
br

39) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
 0
 1
v   0
a  r  b - in spherical coordinates
 r
br
 0
40) Calculate the electric field EVERYWHERE for a volume of charges where the charge
density is
ra
 0
 1
v   0 m a  r  b - in spherical coordinates
 r
br
 0
Physically realistic systems
Need to add problems
Capacitors etc
Static Magnetic fields using Biot-Savart Law – notice that symmetry is
lacking in most of these problems.
Line currents
(These might approximate what you would find on a few loops of wire. There
perhaps a few more problems that can be solve analytically, but not many. )
41) Use Cartisean coordinates to calculate the magnetic field on the z-axis for a line
current where the charge density is
x  a; b  y  b
 I 0 ŷ
 I x̂ a  x  a; y  b
 0
Il  
I 0 ŷ x  a; b  y  b
 I 0 x̂ a  x  a; y  b
42) Use cylindrical coordinates to calculate the magnetic field on the x-y plane for a line
current where the charge density is
 I 0 ẑ r  0
Il  
 0 r0
43) Use cylindrical coordinates to calculate the magnetic field on the z-axis for a line
current where the charge density is
 I 0̂ r  a
Il  
I 0̂ r  b
44) Use cylindrical coordinates to calculate the magnetic field on the z-axis for a line
current where the charge density is
 I 0̂
ra
Il  
2I 0̂ r  2a
45) The magnetic field around a strip cable (2 parallel wires) can be examined if one
considers where the current is flowing. Assume that for the specific strip cable that
the wires are filamentary strands of metal (typically Cu) and that the net flow on one
wire is balanced by an opposite net flow on the other wire. First show that the surface
current density on the wires should be given by:
xa
 I 0 x  a ẑ

I  I 0 x  a ẑ
x  a - in cartisean coordinates

0
elsewhere

Then calculate the magnetic field EVERYWHERE.
Static magnetic fields using Ampere’s Law – notice the symmetry in
these problems.
Cylindrical current densities
(These might approximate what you would find in a volume of a material carrying a
current.)
46) Calculate the magnetic field EVERYWHERE where the current density is
 J 0 ẑ r  a
J
- in cylindrical coordinates
 0 ra
47) Calculate the magnetic field EVERYWHERE where the current density is
 J 0 rẑ r  a
J
- in cylindrical coordinates
ra
 0
48) Calculate the magnetic field EVERYWHERE where the current density is
 J r 2 ẑ r  a
J 0
- in cylindrical coordinates
ra
 0
49) Calculate the magnetic field EVERYWHERE where the current density is
 J r m ẑ r  a
J 0
- in cylindrical coordinates
ra
 0
50) Calculate the magnetic field EVERYWHERE where the current density is
ra
 0
 1
J   J 0 ẑ a  r  b - in cylindrical coordinates
 r
rb
 0
51) Calculate the magnetic field EVERYWHERE where the current density is
ra
 0
 1
J   J 0 2 ẑ a  r  b - in cylindrical coordinates
 r
rb
 0
52) Calculate the magnetic field EVERYWHERE where the current density is
ra
 0
 1
J   J 0 m ẑ a  r  b - in cylindrical coordinates
 r
rb
 0
53) Calculate the magnetic field EVERYWHERE where the current density is
ra
 J 0 rẑ
 0
arb

J
- in cylindrical coordinates
1
J 0 r ẑ b  r  c

rc
 0
54) Calculate the magnetic field EVERYWHERE where the current density is
 J 0 r 2 ẑ
ra

arb
 0
J
- in cylindrical coordinates
1
J
ẑ
b

r

c
0

r2

rc
 0
Physically realistic systems
These problems are intended to approximate physically real situations. Use Ampere’s
Law to solve for the magnetic fields everywhere.
Need to add problems
Parallel wires, coaxial wires, electromagnets, speaker coils, (Long coils vs. short coils)
etc
55) The magnetic field around a strip cable (2 parallel wires) can be examined if one
considers where the current is flowing. Assume that for the specific strip cable that
the wires are filamentary strands of metal (typically Cu) and that the net flow on one
wire is balanced by an opposite net flow on the other wire. First show that the surface
current density on the wires should be given by:
xa
 I 0 x  a ẑ

I  I 0 x  a ẑ
x  a - in cartisean coordinates

0
elsewhere

Then calculate the magnetic field EVERYWHERE.
56) The magnetic field around a coaxial cable can be examined if one considers where the
current is flowing. Assume that for the specific coaxial cable that the wires are made
from single strands of metal (typically Cu) and that the net flow on one wire is
balanced by an opposite net flow on the other wire. First show that the surface
current density on the wires should be given by:
0
ra

 J  r  a ẑ
ra
 s
0
arb

J
- in cylindrical coordinates
J a  r  b ẑ
rb
 sb

0
br

Then calculate the magnetic field EVERYWHERE.
57) Speakers/microphone coils, transformers and inductors rely on the magnetic field
produced by or induced from coils. The simplest geometry is that of an infinitely
long coil. (In fact this is one of only a few geometries that can be solved
analytically.) Assume the coil has a radius of ‘a’ and N loops per length ‘l’. Calculate
the magnetic field EVERYWHERE.
Material issues
For more information look at:
http://www.matweb.com
http://www.nist.gov/srd/materials.htm
http://search.globalspec.com/Search/MaterialsSearch
http://home.san.rr.com/bushnell/Material%20Properties.htm
http://www.memsnet.org/material
http://www.kayelaby.npl.co.uk/general_physics/2_6/2_6_3.html
Material
Al
Al2O3
Au (gold)
Ag (silver)
Ag2O
Cu
CuO
W
WO2
Teflon
Wax (paraffin)
Sea water
Distilled H2O
Mica
Air
Mineral Oil
Si (pure)
Quartz (SiO2)
Glass
Pyrex
Dry Earth
r ()
4.5-8.4
2.1
2.0-2.5
70
81
5.4
1.006
3.8
4-10
4-6
7
µr ()
1.000021
0.999963
0.99996
0.9999976
0.999866
0.99999
1.000250
1.00008
1.000057
~1
0.99999942
0.9999901
0.999987
 (S m
3.5E7
1e-16
4.1E7
6.1E7
5.7E7
1.8E7
1E-20
1E-17
4
1E-4
1E-15
~1
0.9999961
0.9999704
~”
~”
<1E-10
3.9E-4
1e-16
1E-12
5E-12
Wet Earth
Nickel
Cobalt
Mild Steel
Iron
30
600
250
2000
5000
1e-3
1.6E8
1.6E8
6.3E7
1.1E7
58) Calculate the E and D fields for a parallel plate capacitor assuming
a) Air filled gap
b) Quartz filled gap
c) Mica filled gap
d) Mineral oil filled gap
e) Wax filled gap
Assume that the capacitor has a gap of ‘d’ and is made of two infinitely large planes
(Thus, you are ignoring fringing fields.)
59) Calculate the E and D fields and surface charge densities for a parallel plate capacitor
assuming that the capacitor has a structure of
where a1 and a2 are areas and d is the gap. (Ignore fringing fields.)
60) Calculate the E and D fields and surface charge densities for a parallel plate capacitor
assuming that the capacitor has a structure of
where a is the area and d1 and d2 are the dielectric thicknesses. (Ignore fringing
fields.) HINT REMEMBER TO GET ALL OF THE SURFACE CHARGES.
61) Calculate the E and D fields resulting from a surface charge at the interface between
two semi-infinite slabs of dielectric materials. Thus a structure of
62) Calculate the B and H fields resulting from a surface current at the interface between
two semi-infinite slabs of magnetic materials. Thus a structure of
63) Calculate the B and H fields resulting from currents coaxial wire with a series of
different magnetic materials. Thus a structure of
Assume that the current on the inner and outer wires are balanced and that the radii of
the wires are a (inner) and b (outer).
a) Teflon
b) Quartz
c) Mineral Oil
d) Mica
64) Calculate the B and H fields resulting from currents coaxial wire with a series of
different magnetic materials. Thus a structure of
Assume that the current on the inner and outer wires are balanced and that the radii of
the wires are a (inner) and b (outer) and the inner magnetic material, µ1, has a radius
of c.
65) Calculate the conductivity for the following materials
a) Au (There is no AuOx)
b) Ag and Ag2O
c) Cu and CuO
d) Al and Al2O3
e) Explain why cooper is used in household wires.
66) Assuming an electric field of 1 V/m, calculate the terminal velocity of electrons in the
following materials
a) Au
b) Ag
c) Cu
d) Al
e) Explain why Au is used for ‘expensive’ connectors in electronics applications.
67) Assuming an electric field of 1 V/m, calculate the current density for the following
materials
a) Au (There is no AuOx)
b) Ag and Ag2O
c) Cu and CuO
d) Al and Al2O3
e) Explain why cooper is used in household wires.
Boundary problems
68) Calculate the electric fields (E and D) everywhere assuming that you have two semiinfinite dielectric materials such that
E1  2 x̂  3ŷ  5 ẑ
 1  2 0
 2  4  0

 s  0 0
x0
x0
69) Calculate the electric fields (E and D) everywhere assuming that you have two semiinfinite dielectric materials such that
D1  2 0 x̂  3 0 ŷ  5 0 ẑ
 1  4  0
 2  2  0

x0
x0
s  3 0
70) Calculate the electric fields (E and D) everywhere assuming that you have two semiinfinite dielectric materials such that
E1  4 x̂  8 ŷ  10 ẑ
 1  1 0
 2  3 0

y0
y0
 s  2 0
71) Calculate the electric fields (E and D) everywhere assuming that you have two semiinfinite dielectric materials such that
D1  5 0 x̂  3 0 ŷ  2 0 ẑ
 1  2  0
 2  3 0

y0
y0
 s  5 0
72) Calculate the electric fields (E and D) everywhere assuming that you have two semiinfinite dielectric materials such that
E1  2 x̂  5 ŷ  6 ẑ
  2 0
 1
  2  1 0
s  3 0
z0
z0
73) Calculate the electric fields (E and D) everywhere assuming that you have two semiinfinite dielectric materials such that
D1  7 0 x̂  2 0 ŷ  3 0 ẑ
 1  4  0
  2  1 0

 s  2 0
z0
z0
74) Calculate the magnetic fields (B and H) everywhere assuming that you have two
semi-infinite magnetic materials such that
B1  7 0 x̂  2 0 ŷ  30 ẑ
 1  4 0
 2  10

z0
z0
J s  2 ŷ
75) Calculate the magnetic fields (B and H) everywhere assuming that you have two
semi-infinite magnetic materials such that
H1  7 x̂  2 ŷ  3ẑ
 1  4 0
 2  10

z0
z0
J s  2 ŷ
76) Calculate the magnetic fields (B and H) everywhere assuming that you have two
semi-infinite magnetic materials such that
B1  7 0 x̂  2 0 ŷ  30 ẑ
 1  4 0
 2  10

x0
x0
J s  2 ŷ
77) Calculate the magnetic fields (B and H) everywhere assuming that you have two
semi-infinite magnetic materials such that
H1  2 x̂  6 ŷ  3ẑ
 1  3 0
 2  5 0

x0
x0
J s  5 ẑ
78) Calculate the magnetic fields (B and H) everywhere assuming that you have two
semi-infinite magnetic materials such that
B1  2 0 x̂  5 0 ŷ  6 0 ẑ
 1  2 0
 2  30

J s  1ẑ
y0
y0
79) Calculate the magnetic fields (B and H) everywhere assuming that you have two
semi-infinite magnetic materials such that
B1  30 x̂  5 0 ŷ  6 0 ẑ
 1  5 0
 2  2 0

z0
z0
J s  2 x̂  3ŷ
80) Calculate the magnetic fields (B and H) everywhere assuming that you have two
semi-infinite magnetic materials such that
H1  4 x̂  3ŷ  2 ẑ
 1  30
 2  2 0

z0
z0
J s  1x̂  2 ŷ
Homework Section 3
Motors and rails
1)
Assume that you have a single turn square coil that rotates around the z-axis at 60
Hz. The side of the coil is 10 cm. The coil passes through a magnetic field of
B  100x̂ G
How many loops would you need to have in order for you to use this as an AC
generator (120 V RMS) ?
2)
Assume that you have a single turn square coil that rotates around the z-axis at 60
Hz. The side of the coil is 100 cm. The coil passes through a magnetic field of
B  100x̂ G
How many loops would you need to have in order for you to use this as an AC
generator (120 V RMS) ?
3)
Assume that you have a single turn square coil that rotates around the z-axis at 60
Hz. The side of the coil is 100 cm. The coil passes through a magnetic field of
B  10x̂ G
How many loops would you need to have in order for you to use this as an AC
generator (120 V RMS) ?
4)
Assume that you have a single turn square coil that rotates around the x-axis at 60
Hz. The side of the coil is 50 cm. The coil passes through a magnetic field of
B  50 ẑ G
How many loops would you need to have in order for you to use this as an AC
generator (120 V RMS) ?
5)
Assume that you have a single turn square coil that rotates around the y-axis at 60
Hz. The coil passes through a magnetic field of
B  50 x̂ G
How big (area) would the coil have to be in order for you to use this as an AC
generator (120 V RMS) ?
6)
The permanent magnet in a stereo speaker has a strength of
B  10ẑ G
XXXX ?
7)
Rail gun
B  10ẑ G
XXXX ?
8)
Rail gun
B  10ẑ G
XXXX ?
9)
What are the wavelength, frequency and speed of light for wave in free space the
following
H  H 0 cos 0.2cm x  3.14 kHz t ẑ
10)
What are the wavelength, frequency and speed of light for wave in free space the
following
H  H 0 cos 0.1 cm x  0.9 GHz t ẑ
11)
What are the wavelength, frequency and speed of light for wave in free space the
following
H  H 0 cos 1.5 mm x  3 MHz t ẑ
12)
Assuming  r  1 , what is the dielectric constant of the material through the
following wave in free space is traveling
H  H 0 cos 0.2 m x  3.14 MHz t ẑ
13)
Can the following
H  H 0 cos 0.5 km x  5 GHz t ẑ
describe an electromagnetic wave in free space? Why or why not?
14)
Can the following
H  H 0 cos 1 cm x  1 GHz t x̂
describe an electromagnetic wave in free space? Why or why not?
15)
Calculate the related field (E or H) for
H  5 cos 0.4 cm x  6 GHz t ẑ
16)
Calculate the related field (E or H) for
E  5 cos 2 cm x  1 GHz t ŷ
17)
Calculate the related field (E or H) for
H  5cos 150 cm r  0.5 MHz t ̂
18)
Determine the skin depth of 1 MHz radiation in water. What implications does
this have for communications with submarines?
19)
Determine the skin depth of 633 nm radiation in sea water. What implications does
this have for being able to see in the sea?
20)
Determine the skin depth of 1500 nm radiation in glass and in quartz. What
implications does this have for communications in fiber optics?
21)
Determine the skin depth of 1 MHz radiation in Teflon. As Teflon is sometimes
used in coax cables, what implications does this have for communications along
coax?
22)
Is this wave propagating in a perfect dielectric, good dielectric, good conductor or
perfect conductor
H  H 0 cos 0.1 cm x  0.9 GHz t ẑ
  3.4E5(S/m)
23)
Is this wave propagating in a perfect dielectric, good dielectric, good conductor or
perfect conductor
H  H 0 cos 1.5 mm x  3 MHz t ẑ
  7E3(S/m)
24)
Is this wave propagating in a perfect dielectric, good dielectric, good conductor or
perfect conductor
H  H 0 cos 0.2 m x  3.14 MHz t ẑ
  3E2(S/m)
25)
Is this wave propagating in a perfect dielectric, good dielectric, good conductor or
perfect conductor
H  H 0 cos 1 cm x  1 GHz t x̂
  3E8(S/m)
26)
Is this wave propagating in a perfect dielectric, good dielectric, good conductor or
perfect conductor
H  5 cos 0.4 cm x  6 GHz t ẑ
  3E3(S/m)
27)
Is this wave propagating in a perfect dielectric, good dielectric, good conductor or
perfect conductor
E  5 cos 2 cm x  1 GHz t ŷ
  8E6(S/m)
28)
Determine the Poynting vector for
H  H 0 cos 0.2 m x  3.14 MHz t ẑ
29)
Determine the Poynting vector for
H  H 0 cos 0.1 cm x  0.9 GHz t ẑ
30)
Determine the Poynting vector for
H  H 0 cos 1.5 mm x  3 MHz t ẑ
31)
Determine the Poynting vector for
H  H 0 cos 0.2 m x  3.14 MHz t ẑ
32)
Determine the Poynting vector for
H  5 cos 0.4 cm x  6 GHz t ẑ
33)
Determine the Poynting vector for
E  5 cos 2 cm x  1 GHz t ŷ
34)
Determine the Poynting vector for
H  5cos 150 cm r  0.5 MHz t ̂
35)
Determine the Poynting vector for