* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Planetary Fact Sheet – Metric
Aquarius (constellation) wikipedia , lookup
Dyson sphere wikipedia , lookup
Astronomical unit wikipedia , lookup
Equation of time wikipedia , lookup
Observational astronomy wikipedia , lookup
Constellation wikipedia , lookup
History of astronomy wikipedia , lookup
Theoretical astronomy wikipedia , lookup
Corvus (constellation) wikipedia , lookup
Dialogue Concerning the Two Chief World Systems wikipedia , lookup
Air mass (astronomy) wikipedia , lookup
Geocentric model wikipedia , lookup
Archaeoastronomy wikipedia , lookup
Tropical year wikipedia , lookup
Chinese astronomy wikipedia , lookup
Astronomy Assignment #2 Text Problems: Unit Number 5 6 7 Questions for Review 1, 2, 4, 5, 6 1, 4, 6, 7 1, 2, 3, 6 Problems 10, 11, 13, 14 15, 16 (10, 12, 14 not included in these solutions – sorry) Unit 5 10. What are your latitude and longitude? What are the latitude and longitude at the point on the Earth exactly opposite you? What geographic features are located there? A Google search of “latitude and longitude of Syracuse, NY” yields our latitude is about 43 degrees N and longitude is about 76 degrees W. Just opposite us on the globe implies that we (1) take the same latitude but opposite hemisphere and (2) add 180 degrees to the longitude (and then play with the number so that it is between zero and 180 degrees either E or W. So…the point opposite Syracuse, NY on the Earth has a latitude of 43 degrees S and the longitude is (76 W + 180 = 256 W = ) 104 degrees E longitude. On the map below the position of Syracuse, NY and its opposite point are marked with Xs. You can see that our opposite point is in the middle of the ocean off the southwest corner of Australia. X X 11. Your observatory lies at a latitude of 45N and a longitude of 90W. You wish to observe three celestial objects that have declinations of +87, -40, and -67. Which of these objects can you observe? This question requires a fairly complete understanding of the celestial coordinate system and the celestial sphere model. According to the last sentence on page 43 “if a star’s declination matches your latitude it will pass over through zenith”. This means that the declination of your zenith is just your latitude. Observing from 45N will mean that 45 declination will be directly over your head. Following Figure 5.4A on page 42, you can see that the horizon is 90 from the zenith. Thus, any star that is within 90s from the declination of your zenith will be visible. As seen from 45N, all stars between +90 declination and -45 declination will eventually be visible over the horizon. So, you will be able to see the objects at +87 and -40 declination , but not the object at -67 declination.. 13. Boston and Rome are at the same latitude, but Boston is at a longitude of 71W, while Rome is at 12E. If M31 passes through the zenith at a particular time in Rome, how many hours later will it pass through the zenith in Boston? This question requires knowledge of the relationship between the celestial coordinate system and the rotation of the Earth. As stated on page 43, “Each hour of RA equals 15;…if a star at RA =2h is overhead now, a star at RA =5h will be overhead three hours from now.” Thus, if were to calculate the number of degrees longitude between Boston and Rome, then divide that difference by 15 per hour, we would have the time in hours between M31 passing over both cities. Number of degrees longitude between Boston and Rome is 83. This divided by 15 per hour gives a time difference between M31 over Rome than Boston as 5.53 hours or 5 hours and 32 minutes. 14. How far is the celestial equator from your zenith if your latitude is 42N? 34S? This question requires a fairly complete understanding of the celestial coordinate system and the celestial sphere model. According to the last sentence on page 43 “if a star’s declination matches your latitude it will pass over through zenith”. This means that the declination of your zenith is just your latitude. Observing from 42N will mean that 42 declination will be directly over your head. Since 42 declination is 42 away from the celestial equator, the celestial equator must be 42 away from your zenith at this location. Observing from 34S latitude, will mean that the celestial equator is 34 away from your zenith at that location. Draw a celestial sphere, as shown in Figure 5.3, as it would appear if you were standing at the North Pole. What celestial object lies directly above you? What celestial object lies on the horizon? Now draw a celestial sphere, as shown in Figure 5.3, as it would appear if you were standing at the equator. What celestial object lies directly above you? What celestial object lies on the horizon? The following figures were obtained from Nick Strobel's Astronomy Notes. Go to his site at www.astronomynotes.com for the updated and corrected version. (Dr. Jaquin’s personal note: Nick Strobel does a fine job describing the celestial sphere and the apparent motion of the stars. Check out his astronomy lecture notes. ) If you joined Santa last Christmas at the north pole (90 degrees latitude), you would have seen Polaris straight overhead and the celestial equator on your horizon. The point straight overhead on the celestial sphere for any observer is called the zenith and is always 90 degrees from the horizon. The arc that goes through the north point on the horizon, zenith, and south point on the horizon is called the meridian. The positions of the zenith and meridian with respect to the stars will change as the celestial sphere rotates and if the observer changes locations on the Earth, but those reference marks do not change with respect to the observer's horizon. Any celestial object crossing the meridian is at its highest altitude (distance from the horizon) during that night (or day). The angle the star paths make with respect to the horizon = 90 degrees - (observer's latitude). . To warm Rudolph's frozen nose, Santa heads down to the equator (0 degrees latitude). At the equator, you see the celestial equator arcing from exactly east to the zenith to exactly west. The NCP is on your northern horizon. At the equator you see one-half of every star's total 24-hour path around you so all stars are up for 12 hours. All of the stars rise and set perpendicular to the horizon (at an angle = 90 - 0 = 90 degrees). Here is a summary of the positions of the celestial reference marks (note that ``altitude'' means the number of degrees above the horizon): Meridian always goes through due North, zenith, and due South points. Altitude of zenith = 90° (straight overhead) always. Altitude of celestial pole = observer's latitude. Observers in northern hemisphere see NCP; observers in southern hemisphere see SCP. Altitude of celestial equator on meridian = 90 - observer's latitude. Celestial equator always intercepts horizon at exactly East and exactly West points. Angle celestial equator (and any star path) makes with horizon = 90 - observer's latitude. Stars move parallel to the celestial equator. Circumpolar object's distance from celestial pole = observer's latitude. Select this link to show an animation of the celestial sphere changing with latitude. (You'll want your web browser to fill most of your screen!) Check out the Rotating Sky module from the University of Nebraska-Lincoln's Astronomy Education program to explore the connection between your position on the Earth and the path of the stars (link will appear in a new window---choose the "Rotating Sky" part). Unit 6 1. If the shape of the Earth’s orbit was unaltered but its rotation axis was shifted so that it had no tilt with respect to the orbit, how would the seasons be affected? This requires you understand the relationship between the tilt of the Earth and its seasons. This is summarized in unit 6.3 on pages 47 & 48. If the shape of the Earth’s orbit was unaltered but its rotation axis was shifted so that it had no tilt with respect to the orbit, then each hemisphere of the Earth would receive the same amount of sunlight all year long. There would be no variation in the amount of sunlight or the length of day at any latitude. Thus seasons would not exist. There would be not summer or winter, anywhere, anytime. As you can see form the table below, those planets that have a very small tilt and, therefore, no seasons, include Mercury, Venus, the Moon and Jupiter. Planetary Fact Sheet – Metric http://nssdc.gsfc.nasa.gov/planetary/factsheet/ Axial Tilt MERCURY VENUS EARTH MOON MARS JUPITER SATURN URANUS NEPTUNE PLUTO 0.01 -2.6 23.5 6.7 25.2 3.1 26.7 -87.8 28.3 -57.5 (degrees) 15. Describe the motion you would see on the solstices and the equinoxes if you were observing the Sun from the Artic Circle at latitude of 66.5N. This question requires you to understand the apparent motion of the Sun during the year it terms of its declination and the celestial sphere. Recall that the declination of your zenith is equal to your latitude. So observing from the Artic Circle at latitude of 66.5N, your zenith would be at 66.5 degrees declination. Looking south, you would be able to see stars down to (66.5- 90) = -23.5 declination. On the summer solstice, when the Sun has a declination of +23.5, the Sun would be only (66.5- 23.5) = 42 from the zenith and would be up all day. The “all day” part follows form knowing that the NCP will be 66.5 above the northern horizon at this location and all objects between the NCP and (90- 66.5) = 24.5 in declination will be circumpolar. On the equinoxes, when the Sun has a declination of 0, the Sun would be only (66.5- 0) = 66.5 from the zenith visible during the day. However, since the circumpolar region extends to only 24.5 in declination, the Sun will rise and set after 12 hours of daylight. . On the winter solstice, when the Sun has a declination of -23.5, the Sun would be only (66.5-23.5) = 90 from the zenith and would lie exactly on the horizon at noon. The Sun would never rise that day. 16. If you wish to observe a star with a right ascension of 12h, what would be the best time of year to observe it? What would be the best time to observe a star with a right ascension of 6h? The answer to this type of question is best understood by using the Whole Sky Map that we drew in class. See below. Declination Night Day Night +23 ½ 0 -23 ½ 12h 6h 0h 18h 12h Right Ascension The star is best seen at night. That requires that the Sun be far away from the star on the celestial sphere, since the area around the Sun will be daylight. For simplicity, lets that the sky is light 6 hours either side of the Sun. So, the best time to observe the star will be when the Sun is as far away as possible on the celestial sphere,or equivalently, 12 hours away. If the star has RA = 12h, then the Sun should be at RA=0h for best viewing of the star. The diagram illustrates the concept by shading the area beyond ±6 hours around the Sun as night. The Sun is at 0h RA on Mar 22 (Spring Equinox). So the best time to view this star is on March 22. For a star at 6h RA, the Sun should be a 12 hours of RA away or at RA = 18h. This corresponds to the Sun being at the Winter Solstice on December 22. The diagram below illustrates the situation. The best time to view this star is in late December. Declination Night +23 ½ Day 0 -23 ½ 12h 6h 0h Right Ascension 18h 12h