* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Using mass to calculate molecular formula
Atomic nucleus wikipedia , lookup
Freshwater environmental quality parameters wikipedia , lookup
Chemical reaction wikipedia , lookup
Drug discovery wikipedia , lookup
Host–guest chemistry wikipedia , lookup
Water splitting wikipedia , lookup
Metallic bonding wikipedia , lookup
Electron configuration wikipedia , lookup
Bioorthogonal chemistry wikipedia , lookup
Artificial photosynthesis wikipedia , lookup
Organic chemistry wikipedia , lookup
X-ray photoelectron spectroscopy wikipedia , lookup
Computational chemistry wikipedia , lookup
Rate equation wikipedia , lookup
Physical organic chemistry wikipedia , lookup
Resonance (chemistry) wikipedia , lookup
Electrochemistry wikipedia , lookup
Isotopic labeling wikipedia , lookup
Chemical thermodynamics wikipedia , lookup
Chemistry: A Volatile History wikipedia , lookup
Inorganic chemistry wikipedia , lookup
Biochemistry wikipedia , lookup
Rutherford backscattering spectrometry wikipedia , lookup
Gas chromatography–mass spectrometry wikipedia , lookup
Homoaromaticity wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
History of chemistry wikipedia , lookup
Electrolysis of water wikipedia , lookup
Debye–Hückel equation wikipedia , lookup
Hydrogen atom wikipedia , lookup
Nanofluidic circuitry wikipedia , lookup
Implicit solvation wikipedia , lookup
Hypervalent molecule wikipedia , lookup
Organosulfur compounds wikipedia , lookup
Molecular dynamics wikipedia , lookup
Metalloprotein wikipedia , lookup
Chemical bond wikipedia , lookup
IUPAC nomenclature of inorganic chemistry 2005 wikipedia , lookup
Stoichiometry wikipedia , lookup
Using mass to calculate molecular formula From chemical analysis we know that toluenesulphonamide has the following percentage composition by mass: C:49.13%, H:5.25%, N:8.18%, O:18.69% and S:18.75%. What is the chemical formula of the compound? Solution: Express the percentages as mass in grams, and then as moles, i.e. 100 g of the substance contains: 49.13 g 49.13 g C: 12.01 g mol-1 = 4.09 moles of C atoms 5.25 g 5.25 g H = 1.01 g mol-1 = 5.25 moles of H atoms 8.18 g 8.18 g N: 14.00 g mol-1 = 0.58 moles of N atoms 18.69 g 18.69 g O: 15.99 g mol-1. = 1.17 moles of O atoms 18.75 g 18.75 g S: 32.06 g mol-1 = 0.58 moles of S atoms The ratio of moles of the constituent elements = ratio of atoms in the molecule. Fractions of atoms cannot exist; convert the calculated ratio to the least whole number ratio by dividing by the smallest mol number (0.58). C: (4.09/0.58) = 7.05, H: (5.25/0.58) = 9.05, N(0.58/0.58)= 1.00, O: (1.17.0.58) = 2.01, S:().58/0.58) =1.00 i.e. C7H9NO2S Note that the resulting ratios show small deviations from a whole-number ratio because of experimental error in the original data and can be neglected. Empirical formula and Molecular formula Benzene consists of 7.69% H and 92.31%C. Converting this to a formula gives CH. This is the simplest integer ratio. In fact a molecule of benzene has the formula C6H6. Empirical formula CH – simplest whole number ratio. Molecular formula C6H6 – actual number of atoms in the molecule. Percentages of elements in a compound can only give the empirical formula. Need extra information to determine the molecular formula. Non-molecular compounds There are three kinds of non-molecular substances: 1. Mono-atomic substances: e.g. He, Ne, Kr, Ar and Xe (known as ‘Noble Gas’ elements). C 2. Giant molecules: e.g. silicon carbide i.e. SiC or (SiC)n. In this compound there are equal numbers of silicon and carbon Si Si Si C C C Si atoms. Each silicon atom is surrounded by and bonded to four carbon atoms, while each carbon is similarly attached to four silicon atoms. The size of the particle of solid silicon carbide is the only limitation on the number of atoms in the network – which is so large as, for all intents and purposes, to be effectively infinite. (Can include metals in this group of non-molecular compounds.) 3. Ionic Compounds and Ionic Bonding An ion is an atom or a molecule with an electrical charge. e.g. Na+ - the sodium ion - is the sodium atom less one electron. (11 protons in the nucleus, 10 electrons around the nucleus.) Cl- - the chloride ion – is the chlorine atom with an extra electron. ( 17 protons in the nucleus, 18 electrons around the nucleus.) O _ nuclei. (How many electrons??) N O NO3- - the nitrate ion - one electron more than the total charge on the O Ionic bonding is the electrostatic attraction between the ions. Na+ Cl- ; (Na+)2 SO42-; K+ NO3- ; Ca2+ (F-)2 ; (NH4+)(ClO4-) ; etc (overall neutral)The ions are held together by electrostatic attraction between the opposite charges.(Ionic Bonding). Since an ionic compound must be neutral overall there must be equal numbers of charges on the positive ions (cations) as there are on the negative ions (anions) and this determines the formula for that compound. Example: Sodium chloride, NaCl, 'table salt' Both Giant molecules and Ionic compounds do not contain molecules. They have an empirical formula but not a molecular formula. Chemical Reactions and Chemical Equations Compounds react to form other compounds – chemical reactions. Reactions are described by a chemical equation. e.g. 2H2 + O2 2H2O Hydrogen and oxygen react to form water Hydrogen and oxygen are the REACTANTS, water is the PRODUCT As a chemical reaction does not change the types of atoms in the reaction, only rearranges them, there must be as many atoms of each type on the left hand side (LHS) as on the right hand side (RHS). (A balanced chemical equation.) The equation shows the amounts of reactants and products in proportion: 2 molecules of hydrogen react with 1 molecule of oxygen to form 2 molecules of water. 2 moles of hydrogen react with 1 mole of oxygen to form 2 moles of water. 4 g of H2 react with 32 g of O2 to form 36 g of H2O A chemical equation shows the reactant and product molecules and the amounts in which they react or are formed. e.g. HCl + NaOH H2O + NaCl Hydrochloric acid reacts with sodium hydroxide to form water and sodium chloride (common salt). 1 mole of HCl (36.5 g) reacts with 1 mole of NaOH (23+16+1=40 g) to form 1 mole of water (18 g) and 1 mole of NaCl (23+35.5=58.5 g) CH4 + 2O2 CO2 + 2H2O methane + oxygen carbon dioxide + water Check that the number of atoms of each type is correct and that the masses are conserved. If 3.4 g of methane are burnt in excess oxygen, what mass of carbon dioxide is formed. 13.4 g of CH4 is 13.4/16 = 0.837 mol of CH4 Equation shows that 1 mol CH4 produces 1 mol CO2, therefore 0.837 mol CO2, mass 0.837(12+2x16) = 36.8 g are formed. If 0.7 mol of CH4 is reacted with 0.5 mol O2, what is the composition of the mixture after the reaction? 0.5 mol O2 reacts with 0.25 mol CH4 to form 0.25 mol of CO2 and 0.5 mol H2O. Therefore mixture contains 0.25 mol of CO2 , 0.50 mol H2O, 0.45 mol CH4. (Limiting Reagents) Balance the equation: NH4NO3 N2 + O2 + H2O (ammonium nitrate decomposes to give nitrogen gas, oxygen gas and water) balance H: NH4NO3 N2 + O2 + 2H2O balance O: NH4NO3 N2 + 1/2O2 + 2H2O N is balanced. Whole numbers: 2NH4NO3 2N2 + O2 + 4H2O If 7.4 g of ammonium nitrate decomposes, how many moles of the products are formed? Molecular mass NH4NO3 = 2x14+4x1+3x16 = 80 g mol-1 7.4 g is 7.4/80 = 0.0925 mol NH4NO3, therefore 0.0925 mol N2, 0.0462 mol O2 and 0.185 mol H2O are formed. More information in Chemical Equations. Chemical equations also show the state of the compounds. NH4NO3 (s) N2 (g) + O2 (g) + H2O (l) HCl (aq) + NaOH (aq) H2O + NaCl (aq) solid, liquid, gas, aqueous solution … Types of Chemical Reactions Some types of reactions have particular names: Decomposition: CaCO3 (s) CaO (s) + CO2 (g) Combustion (reaction with oxygen): CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (g) Hydrogenation (reaction with hydrogen): N2 (g) + 3H2 (g) 2NH3 (g) Combination Formation Hydrolysis Precipitation Disproportionation