Download HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS 35A, 1200V, NPT Series N-Channel IGBT Features

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Three-phase electric power wikipedia , lookup

Memristor wikipedia , lookup

Mercury-arc valve wikipedia , lookup

Power inverter wikipedia , lookup

Power engineering wikipedia , lookup

Thermal runaway wikipedia , lookup

Electrical ballast wikipedia , lookup

Islanding wikipedia , lookup

Pulse-width modulation wikipedia , lookup

History of electric power transmission wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Ohm's law wikipedia , lookup

Voltage regulator wikipedia , lookup

Rectifier wikipedia , lookup

Schmitt trigger wikipedia , lookup

Distribution management system wikipedia , lookup

Stray voltage wikipedia , lookup

Electrical substation wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Metadyne wikipedia , lookup

Voltage optimisation wikipedia , lookup

Power electronics wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Mains electricity wikipedia , lookup

P–n diode wikipedia , lookup

Current source wikipedia , lookup

Surge protector wikipedia , lookup

Alternating current wikipedia , lookup

TRIAC wikipedia , lookup

Rectiverter wikipedia , lookup

Current mirror wikipedia , lookup

Transistor wikipedia , lookup

Opto-isolator wikipedia , lookup

Buck converter wikipedia , lookup

Transcript
HGTG10N120BN, HGTP10N120BN,
HGT1S10N120BNS
Data Sheet
August 2002
35A, 1200V, NPT Series N-Channel IGBT
Features
The HGTG10N120BN, HGTP10N120BN and
HGT1S10N120BNS are Non-Punch Through (NPT) IGBT
designs. They are new members of the MOS gated high
voltage switching IGBT family. IGBTs combine the best
features of MOSFETs and bipolar transistors. This device
has the high input impedance of a MOSFET and the low onstate conduction loss of a bipolar transistor.
• 35A, 1200V, TC = 25oC
The IGBT is ideal for many high voltage switching
applications operating at moderate frequencies where low
conduction losses are essential, such as: AC and DC motor
controls, power supplies and drivers for solenoids, relays
and contactors.
• Avalanche Rated
Formerly Developmental Type TA49290.
Ordering Information
PART NUMBER
• 1200V Switching SOA Capability
• Typical Fall Time. . . . . . . . . . . . . . . . 140ns at TJ = 150oC
• Short Circuit Rating
• Low Conduction Loss
• Thermal Impedance SPICE Model
Temperature Compensating SABER™ Model
www.fairchildsemi.com
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards
Packaging
PACKAGE
BRAND
HGTG10N120BN
TO-247
G10N120BN
HGTP10N120BN
TO-220AB
10N120BN
HGT1S10N120BNS
TO-263AB
10N120BN
JEDEC STYLE TO-247
E
C
COLLECTOR
(FLANGE)
G
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the TO-263AB variant in tape and reel, e.g.
HGT1S10N120BNST.
Symbol
C
JEDEC TO-220AB (ALTERNATE VERSION)
G
COLLECTOR
(FLANGE)
E
C
G
E
JEDEC TO-263AB
COLLECTOR
(FLANGE)
G
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS
4,364,073
4,598,461
4,682,195
4,803,533
4,888,627
4,417,385
4,605,948
4,684,413
4,809,045
4,890,143
©2002 Fairchild Semiconductor Corporation
4,430,792
4,620,211
4,694,313
4,809,047
4,901,127
4,443,931
4,631,564
4,717,679
4,810,665
4,904,609
4,466,176
4,639,754
4,743,952
4,823,176
4,933,740
4,516,143
4,639,762
4,783,690
4,837,606
4,963,951
4,532,534
4,641,162
4,794,432
4,860,080
4,969,027
4,587,713
4,644,637
4,801,986
4,883,767
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS Rev. B1
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
HGTG10N120BN
HGTP10N120BN
HGT1S10N120BNS
UNITS
1200
V
At TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IC25
35
A
At TC = 110oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IC110
17
A
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ICM
80
A
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGES
±20
V
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VGEM
±30
V
Switching Safe Operating Area at TJ = 150oC (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA
55A at 1200V
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BVCES
Collector Current Continuous
Power Dissipation Total at TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
298
W
Power Dissipation Derating TC > 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.38
W/oC
Forward Voltage Avalanche Energy (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAV
80
mJ
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
-55 to 150
oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, see Tech Brief 334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg
300
260
oC
oC
Short Circuit Withstand Time (Note 3) at VGE = 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tSC
8
µs
Short Circuit Withstand Time (Note 3) at VGE = 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .tSC
15
µs
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Pulse width limited by maximum junction temperature.
2. ICE = 20A, L = 400µH, TJ = 25oC.
3. VCE(PK) = 840V, TJ = 125oC, RG = 10Ω.
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Collector to Emitter Breakdown Voltage
BVCES
IC = 250µA, VGE = 0V
1200
-
-
V
Emitter to Collector Breakdown Voltage
BVECS
IC = 10mA, VGE = 0V
15
-
-
V
TC = 25oC
-
-
250
µA
TC = 125oC
-
150
-
µA
TC = 150oC
-
-
2
mA
TC = 25oC
-
2.45
2.7
V
TC = 150oC
-
3.7
4.2
V
6.0
6.8
-
V
-
-
±250
nA
55
-
-
A
-
10.4
-
V
VGE = 15V
-
100
120
nC
VGE = 20V
-
130
150
nC
Collector to Emitter Leakage Current
Collector to Emitter Saturation Voltage
Gate to Emitter Threshold Voltage
Gate to Emitter Leakage Current
ICES
VCE(SAT)
VGE(TH)
IGES
VCE = 1200V
IC = 10A,
VGE = 15V
IC = 90µA, VCE = VGE
VGE = ±20V
Switching SOA
SSOA
TJ = 150oC, RG = 10Ω, VGE = 15V,
L = 400µH, VCE(PK) = 1200V
Gate to Emitter Plateau Voltage
VGEP
IC = 10A, VCE = 600V
On-State Gate Charge
©2002 Fairchild Semiconductor Corporation
QG(ON)
IC = 10A,
VCE = 600V
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS Rev. B1
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS
Electrical Specifications
TC = 25oC, Unless Otherwise Specified (Continued)
PARAMETER
SYMBOL
Current Turn-On Delay Time
td(ON)I
Current Rise Time
trI
Current Turn-Off Delay Time
td(OFF)I
Current Fall Time
TEST CONDITIONS
IGBT and Diode at TJ = 25oC
ICE = 10A
VCE = 960V
VGE = 15V
RG = 10Ω
L = 2mH
Test Circuit (Figure 18)
tfI
MIN
TYP
MAX
UNITS
-
23
26
ns
-
11
15
ns
-
165
210
ns
-
100
140
ns
Turn-On Energy (Note 5)
EON1
-
0.32
0.4
mJ
Turn-On Energy (Note 5)
EON2
-
0.85
1.1
mJ
Turn-Off Energy (Note 4)
EOFF
-
0.8
1.0
mJ
Current Turn-On Delay Time
td(ON)I
-
21
25
ns
-
11
15
ns
-
190
250
ns
-
140
200
ns
Current Rise Time
trI
Current Turn-Off Delay Time
td(OFF)I
Current Fall Time
tfI
IGBT and Diode at TJ = 150oC
ICE = 10A
VCE = 960V
VGE = 15V
RG = 10Ω
L = 2mH
Test Circuit (Figure 18)
Turn-On Energy (Note 5)
EON1
-
0.4
0.5
mJ
Turn-On Energy (Note 5)
EON2
-
1.75
2.3
mJ
Turn-Off Energy (Note 4)
EOFF
-
1.1
1.4
mJ
0.42
oC/W
Thermal Resistance Junction To Case
RθJC
-
-
NOTES:
4. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending
at the point where the collector current equals zero (ICE = 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
5. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. EON1 is the turn-on loss of the IGBT only. EON2
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same TJ as the IGBT. The diode type is specified in
Figure 18.
Unless Otherwise Specified
ICE , DC COLLECTOR CURRENT (A)
35
VGE = 15V
30
25
20
15
10
5
0
25
50
75
100
125
TC , CASE TEMPERATURE (oC)
FIGURE 1. DC COLLECTOR CURRENT vs CASE
TEMPERATURE
©2002 Fairchild Semiconductor Corporation
150
ICE, COLLECTOR TO EMITTER CURRENT (A)
Typical Performance Curves
60
50
TJ = 150oC, RG = 10Ω, VGE = 15V, L = 400µH
40
30
20
10
0
0
200
400
600
800
1000
1200
1400
VCE , COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS Rev. B1
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS
TJ = 150oC, RG = 10Ω, L = 2mH, V CE = 960V
100
50
TC = 75oC, VGE = 15V, IDEAL DIODE
10
1
fMAX1 = 0.05 / (td(OFF)I + td(ON)I)
fMAX2 = (PD - PC) / (EON2 + EOFF)
PC = CONDUCTION DISSIPATION
(DUTY FACTOR = 50%)
RØJC = 0.42oC/W, SEE NOTES
2
TC
75oC
75oC
110oC
110oC
5
VGE
15V
12V
15V
12V
10
20
25
200
20
tSC
150
10
100
5
12
40
30
TC = 25oC
20
TC = 150oC
10
6
4
8
10
ICE , COLLECTOR TO EMITTER CURRENT (A)
ICE, COLLECTOR TO EMITTER CURRENT (A)
DUTY CYCLE <0.5%, VGE = 12V
PULSE DURATION = 250µs
2
50
16
50
TC = 25oC
40
30
TC = 150oC
20
10
DUTY CYCLE <0.5%, VGE = 15V
PULSE DURATION = 250µs
0
0
2
4
6
8
10
VCE , COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE
2.0
5
RG = 10Ω, L = 2mH, VCE = 960V
EOFF, TURN-OFF ENERGY LOSS (mJ)
EON2 , TURN-ON ENERGY LOSS (mJ)
15
TC = -55oC
VCE , COLLECTOR TO EMITTER VOLTAGE (V)
4
TJ = 150oC, VGE = 12V, VGE = 15V
3
2
1
TJ = 25oC, VGE = 12V, VGE = 15V
0
14
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME
50
0
13
VGE , GATE TO EMITTER VOLTAGE (V)
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO
EMITTER CURRENT
0
ISC
15
ICE, COLLECTOR TO EMITTER CURRENT (A)
TC = -55oC
250
VCE = 840V, RG = 10Ω, TJ = 125oC
ISC, PEAK SHORT CIRCUIT CURRENT (A)
Unless Otherwise Specified (Continued)
tSC , SHORT CIRCUIT WITHSTAND TIME (µs)
fMAX, OPERATING FREQUENCY (kHz)
Typical Performance Curves
0
5
10
15
ICE , COLLECTOR TO EMITTER CURRENT (A)
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
©2002 Fairchild Semiconductor Corporation
20
RG = 10Ω, L = 2mH, VCE = 960V
1.5
TJ = 150oC, VGE = 12V OR 15V
1.0
TJ = 25oC, VGE = 12V OR 15V
0.5
0
0
5
10
15
20
ICE , COLLECTOR TO EMITTER CURRENT (A)
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS Rev. B1
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS
Typical Performance Curves
Unless Otherwise Specified (Continued)
40
50
RG = 10Ω, L = 2mH, VCE = 960V
TJ = 25oC, TJ = 150oC, VGE = 12V
35
40
trI , RISE TIME (ns)
tdI , TURN-ON DELAY TIME (ns)
RG = 10Ω, L = 2mH, VCE = 960V
30
25
20
TJ = 25oC, TJ = 150oC, VGE = 12V
30
20
10
TJ = 25oC OR TJ = 150oC, VGE = 15V
TJ = 25oC, TJ = 150oC, VGE = 15V
15
0
5
15
10
0
20
0
ICE , COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
15
20
300
RG = 10Ω, L = 2mH, VCE = 960V
RG = 10Ω, L = 2mH, VCE = 960V
350
250
tfI , FALL TIME (ns)
td(OFF)I , TURN-OFF DELAY TIME (ns)
10
FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO
EMITTER CURRENT
400
VGE = 12V, VGE = 15V, TJ = 150oC
300
250
200
200
TJ = 150oC, VGE = 12V OR 15V
150
100
150
VGE = 12V, VGE = 15V, TJ = 25oC
100
TJ = 25oC, VGE = 12V OR 15V
50
0
10
5
0
20
15
ICE , COLLECTOR TO EMITTER CURRENT (A)
20
VGE , GATE TO EMITTER VOLTAGE (V)
DUTY CYCLE <0.5%, VCE = 20V
PULSE DURATION = 250µs
80
60
TC = 25oC
20
TC = 150oC
TC = -55oC
0
7
8
9
10
11
12
13
VGE , GATE TO EMITTER VOLTAGE (V)
FIGURE 13. TRANSFER CHARACTERISTIC
©2002 Fairchild Semiconductor Corporation
14
10
15
20
FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER
CURRENT
100
40
5
ICE , COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO
EMITTER CURRENT
ICE, COLLECTOR TO EMITTER CURRENT (A)
5
ICE , COLLECTOR TO EMITTER CURRENT (A)
15
IG (REF) = 1mA, RL = 60Ω, TC = 25oC
15
VCE = 1200V
VCE = 800V
10
VCE = 400V
5
0
0
20
40
60
80
100
120
QG , GATE CHARGE (nC)
FIGURE 14. GATE CHARGE WAVEFORMS
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS Rev. B1
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS
Unless Otherwise Specified (Continued)
4
C, CAPACITANCE (nF)
FREQUENCY = 1MHz
3
CIES
2
1
COES
0
CRES
0
5
10
15
20
25
ICE, COLLECTOR TO EMITTER CURRENT (A)
Typical Performance Curves
15
DUTY CYCLE <0.5%, TC = 110oC
PULSE DURATION = 250µs
12
VGE = 15V
9
VGE = 10V
6
3
0
0
1
VCE, COLLECTOR TO EMITTER VOLTAGE (V)
4
VCE , COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER
VOLTAGE
ZθJC , NORMALIZED THERMAL RESPONSE
3
2
FIGURE 16. COLLECTOR TO EMITTER ON-STATE VOLTAGE
100
0.5
0.2
0.1
10-1
0.05
t1
0.02
DUTY FACTOR, D = t1 / t2
0.01
PEAK TJ = (PD X ZθJC X RθJC) + TC
SINGLE PULSE
10-2
10-5
PD
10-4
10-3
10-2
t2
10-1
100
t1 , RECTANGULAR PULSE DURATION (s)
FIGURE 17. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE
Test Circuit and Waveforms
HGTG10N120BND
90%
10%
VGE
EON2
EOFF
L = 2mH
VCE
RG = 10Ω
90%
+
-
ICE
VDD = 960V
10%
td(OFF)I
tfI
trI
td(ON)I
FIGURE 18. INDUCTIVE SWITCHING TEST CIRCUIT
©2002 Fairchild Semiconductor Corporation
FIGURE 19. SWITCHING TEST WAVEFORMS
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS Rev. B1
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS
Handling Precautions for IGBTs
Operating Frequency Information
Insulated Gate Bipolar Transistors are susceptible to
gate-insulation damage by the electrostatic discharge of
energy through the devices. When handling these devices,
care should be exercised to assure that the static charge
built in the handler’s body capacitance is not discharged
through the device. With proper handling and application
procedures, however, IGBTs are currently being extensively
used in production by numerous equipment manufacturers in
military, industrial and consumer applications, with virtually
no damage problems due to electrostatic discharge. IGBTs
can be handled safely if the following basic precautions are
taken:
Operating frequency information for a typical device
(Figure 3) is presented as a guide for estimating device
performance for a specific application. Other typical
frequency vs collector current (ICE) plots are possible using
the information shown for a typical unit in Figures 5, 6, 7, 8, 9
and 11. The operating frequency plot (Figure 3) of a typical
device shows fMAX1 or fMAX2; whichever is smaller at each
point. The information is based on measurements of a
typical device and is bounded by the maximum rated
junction temperature.
1. Prior to assembly into a circuit, all leads should be kept
shorted together either by the use of metal shorting
springs or by the insertion into conductive material such
as “ECCOSORBD™ LD26” or equivalent.
2. When devices are removed by hand from their carriers,
the hand being used should be grounded by any suitable
means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from
circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage
rating of VGEM. Exceeding the rated VGE can result in
permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are
essentially capacitors. Circuits that leave the gate opencircuited or floating should be avoided. These conditions
can result in turn-on of the device due to voltage buildup
on the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal
monolithic Zener diode from gate to emitter. If gate
protection is required an external Zener is recommended.
©2002 Fairchild Semiconductor Corporation
fMAX1 is defined by fMAX1 = 0.05/(td(OFF)I+ td(ON)I).
Deadtime (the denominator) has been arbitrarily held to 10%
of the on-state time for a 50% duty factor. Other definitions
are possible. td(OFF)I and td(ON)I are defined in Figure 19.
Device turn-off delay can establish an additional frequency
limiting condition for an application other than TJM . td(OFF)I
is important when controlling output ripple under a lightly
loaded condition.
fMAX2 is defined by fMAX2 = (PD - PC)/(EOFF + EON2). The
allowable dissipation (PD) is defined by PD = (TJM - TC)/RθJC.
The sum of device switching and conduction losses must
not exceed PD. A 50% duty factor was used (Figure 3) and
the conduction losses (PC) are approximated by
PC = (VCE x ICE)/2.
EON2 and EOFF are defined in the switching waveforms
shown in Figure 19. EON2 is the integral of the
instantaneous power loss (ICE x VCE) during turn-on and
EOFF is the integral of the instantaneous power loss
(ICE x VCE) during turn-off. All tail losses are included in the
calculation for EOFF; i.e., the collector current equals zero
(ICE = 0).
HGTG10N120BN, HGTP10N120BN, HGT1S10N120BNS Rev. B1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
FACT™
ActiveArray™
FACT Quiet Series™
Bottomless™
FASTâ
CoolFET™
FASTr™
CROSSVOLT™ FRFET™
DOME™
GlobalOptoisolator™
EcoSPARK™
GTO™
E2CMOSTM
HiSeC™
EnSignaTM
I2C™
Across the board. Around the world.™
The Power Franchise™
Programmable Active Droop™
ImpliedDisconnect™ PACMAN™
POP™
ISOPLANAR™
Power247™
LittleFET™
PowerTrenchâ
MicroFET™
QFET™
MicroPak™
QS™
MICROWIRE™
QT Optoelectronics™
MSX™
Quiet Series™
MSXPro™
RapidConfigure™
OCX™
RapidConnect™
OCXPro™
SILENT SWITCHERâ
OPTOLOGICâ
SMART START™
OPTOPLANAR™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
TruTranslation™
UHC™
UltraFETâ
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
2. A critical component is any component of a life
1. Life support devices or systems are devices or
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I1