* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download OP282
Stepper motor wikipedia , lookup
Spark-gap transmitter wikipedia , lookup
Mercury-arc valve wikipedia , lookup
Chirp spectrum wikipedia , lookup
Utility frequency wikipedia , lookup
Electrical substation wikipedia , lookup
History of electric power transmission wikipedia , lookup
Electrical ballast wikipedia , lookup
Power inverter wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Surge protector wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Stray voltage wikipedia , lookup
Current source wikipedia , lookup
Three-phase electric power wikipedia , lookup
Schmitt trigger wikipedia , lookup
Voltage regulator wikipedia , lookup
Two-port network wikipedia , lookup
Power MOSFET wikipedia , lookup
Power electronics wikipedia , lookup
Voltage optimisation wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Alternating current wikipedia , lookup
Buck converter wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Current mirror wikipedia , lookup
Dual/Quad Low Power, High Speed JFET Operational Amplifiers OP282/OP482 PIN CONNECTIONS 1 8 V+ –IN A 2 7 OUT B +IN A 3 6 –IN B V– 4 5 +IN B GENERAL DESCRIPTION The OP282/OP482 dual and quad operational amplifiers feature excellent speed at exceptionally low supply currents. The slew rate is typically 9 V/μs with a supply current under 250 μA per amplifier. These unity-gain stable amplifiers have a typical gain bandwidth of 4 MHz. +IN A 3 OP282 TOP VIEW (Not to Scale) V– 4 8 V+ 7 OUT B 6 –IN B 5 +IN B Figure 2. 8-Lead MSOP [RM-8] OUT A 1 –IN A 2 +IN A 3 V+ 4 14 OUT D – + 13 –IN D + – 12 +IN D OP482 11 V– www.BDTIC.com/ADI The JFET input stage of the OP282/OP482 ensures bias current is typically a few picoamps and below 500 pA over the full temperature range. Offset voltage is under 3 mV for the dual and under 4 mV for the quad. 00301-002 –IN A 2 Active filters Fast amplifiers Integrators Supply current monitoring OP-482 Figure 1. 8-Lead Narrow-Body SOIC (S-Suffix) [R-8] OUT A 1 APPLICATIONS OP282 00301-001 OUT A +IN B 5 –IN B 6 OUT B 7 – + 10 +IN C + – 9 –IN C 8 OUT C 00301-003 High slew rate: 9 V/μs Wide bandwidth: 4 MHz Low supply current: 250 μA/amplifier maximum Low offset voltage: 3 mV maximum Low bias current: 100 pA maximum Fast settling time Common-mode range includes V+ Unity-gain stable Figure 3. 14-Lead PDIP (P-Suffix) [N-14] With a wide output swing, within 1.5 V of each supply, low power consumption, and high slew rate, the OP282/OP482 are ideal for battery-powered systems or power restricted applications. An input common-mode range that includes the positive supply makes the OP282/OP482 an excellent choice for highside signal conditioning. OUT A 1 14 OUT D –IN A 2 13 –IN D +IN A 3 12 +IN D 11 V– The OP282/OP482 are specified over the extended industrial temperature range. The OP282 is available in the standard 8-lead narrow SOIC and MSOP packages. The OP482 is available in PDIP and narrow SOIC packages. OP482 V+ 4 +IN B 5 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C 00301-004 FEATURES Figure 4. 14-Lead Narrow-Body SOIC (S-Suffix) [R-14] Rev. G Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved. OP282/OP482 TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................4 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................5 General Description ......................................................................... 1 Applications Information .............................................................. 12 Pin Connections ............................................................................... 1 High-Side Signal Conditioning ................................................ 12 Revision History ............................................................................... 2 Phase Inversion ........................................................................... 12 Specifications..................................................................................... 3 Active Filters ............................................................................... 12 Electrical Characteristics ............................................................. 3 Programmable State Variable Filter ......................................... 13 Absolute Maximum Ratings............................................................ 4 Outline Dimensions ....................................................................... 14 Thermal Resistance ...................................................................... 4 Ordering Guide .......................................................................... 16 REVISION HISTORY 7/08—Rev. F to Rev. G Changes to Phase Inversion Section ............................................ 12 Deleted Figure 45 ............................................................................ 12 Added Figure 45 and Figure 46..................................................... 12 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 16 10/04—Rev. E to Rev. F Deleted 8-Lead PDIP ......................................................... Universal Added 8-Lead MSOP ......................................................... Universal Changes to Format and Layout ......................................... Universal Changes to Features.......................................................................... 1 Changes to Pin Configurations....................................................... 1 Changes to General Description .................................................... 1 Changes to Specifications ................................................................ 3 Changes to Absolute Maximum Ratings ....................................... 4 Changes to Table 3 ............................................................................ 4 Added Figure 5 through Figure 20; Renumbered Successive Figures ............................................................................. 5 Updated Figure 21 and Figure 22 ................................................... 7 Updated Figure 23 and Figure 27 ................................................... 8 Updated Figure 29 ............................................................................ 9 Updated Figure 35 and Figure 36 ................................................. 10 Updated Figure 43 .......................................................................... 11 Changes to Applications Information .......................................... 12 Changes to Figure 44 ...................................................................... 12 Deleted OP282/OP482 Spice Macro Model Section.................... 9 Deleted Figure 4 ................................................................................ 9 Deleted OP282 Spice Marco Model ............................................. 10 Updated Outline Dimensions ....................................................... 14 Changes to Ordering Guide .......................................................... 14 10/02—Rev. D to Rev. E Edits to 8-Lead Epoxy DIP (P-Suffix) Pin......................................1 Edits to Ordering Guide ...................................................................3 Edits to Outline Dimensions......................................................... 11 9/02—Rev. C to Rev. D Edits to 14-Lead SOIC (S-Suffix) Pin .............................................1 Replaced 8-Lead SOIC (S-Suffix) ................................................. 11 4/02—Rev. B to Rev. C Wafer Test Limits Deleted ................................................................2 Edits to Absolute Maximum Ratings ..............................................3 Dice Characteristics Deleted ............................................................3 Edits to Ordering Guide ...................................................................3 Edits to Figure 1 .................................................................................7 Edits to Figure 3 .................................................................................8 20-Position Chip Carrier (RC Suffix) Deleted ........................... 11 www.BDTIC.com/ADI Rev. G | Page 2 of 16 OP282/OP482 SPECIFICATIONS ELECTRICAL CHARACTERISTICS At VS = ±15.0 V, TA = 25°C, unless otherwise noted; applies to both A and G grades. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions VOS OP282 OP282, −40°C ≤ TA ≤ +85°C OP482 OP482, −40°C ≤ TA ≤ +85°C VCM = 0 V VCM = 0 V 1 VCM = 0 V VCM = 0 V1 Input Bias Current IB Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain CMRR AVO Offset Voltage Drift Bias Current Drift OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit −11 V ≤ VCM ≤ +15 V, −40°C ≤ TA ≤ +85°C RL = 10 kΩ RL = 10 kΩ, −40°C ≤ TA ≤ +85°C Min 1 ZOUT Unit 0.2 3 4.5 4 6 100 500 50 250 +15 mV mV mV mV pA pA pA pA V dB V/mV V/mV μV/°C pA/°C 3 1 −11 70 20 15 90 10 8 RL = 10 kΩ RL = 10 kΩ Source Sink f = 1 MHz 13.5 www.BDTIC.com/ADI Open-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier Supply Voltage Range DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density Max 0.2 ΔVOS/ΔT ΔIB/ΔT VOH VOL ISC Typ PSRR ISY VS VS = ±4.5 V to ±18 V, −40°C ≤ TA ≤ +85°C VO = 0 V, −40°C ≤ TA ≤ 85°C SR BWP tS GBP ØM RL = 10 kΩ 1% distortion To 0.01% en p-p en in 0.1 Hz to 10 Hz f = 1 kHz 3 13.9 −13.9 10 −12 200 25 210 ±4.5 7 −8 316 250 ±18 V V mA mA Ω μV/V μA V 9 125 1.6 4 55 V/μs kHz μs MHz Degrees 1.3 36 0.01 μV p-p nV/√Hz pA/√Hz The input bias and offset currents are characterized at TA = TJ = 85°C. Bias and offset currents are guaranteed but not tested at −40°C. Rev. G | Page 3 of 16 −13.5 OP282/OP482 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameters Supply Voltage Input Voltage Differential Input Voltage1 Output Short-Circuit Duration Storage Temperature Range P-Suffix (N), S-Suffix (R), RM Packages Operating Temperature Range OP282G, OP282A, OP482G Junction Temperature Range P-Suffix (N), S-Suffix (R), RM Packages Lead Temperature (Soldering 60 sec) 1 θJA is specified for the worst-case conditions, that is, a device in socket for CERDIP and PDIP. θJA is specified for device soldered in circuit board for SOIC_N or MSOP packages. Ratings ±18 V ±18 V 36 V Indefinite Table 3. −65°C to +150°C −40°C to +85°C −65°C to +150°C 300°C Package Type 8-Lead MSOP [RM] 8-Lead SOIC_N (S-Suffix) [R] 14-Lead PDIP (P-Suffix) [N] 14-Lead SOIC_N (S-Suffix) [R] θJA 206 157 83 104 ESD CAUTION For supply voltages less than ±18 V, the absolute maximum input voltage is equal to the supply voltage. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. www.BDTIC.com/ADI Rev. G | Page 4 of 16 θJC 44 56 39 36 Unit °C/W °C/W °C/W °C/W OP282/OP482 TYPICAL PERFORMANCE CHARACTERISTICS VS = ±15V TA = 25°C 20 45 0 0 CLOSED-LOOP GAIN (dB) 90 50 PHASE (Degree) 40 40 30 AVCL = 100 AVCL = 10 20 10 0 AVCL = 1 –10 –45 –20 VS = ±15V TA = 25°C 60 135 60 –20 100k FREQUENCY (Hz) 10k –90 10M 1M –30 1k 00301-005 –40 1k Figure 5. OP282 Open-Loop Gain and Phase vs. Frequency 45 10k 100k FREQUENCY (Hz) 30 25 SLEW RATE (V/µs) OPEN-LOOP GAIN (V/mV) 30 25 –SR 20 15 www.BDTIC.com/ADI 15 10M VS = ±15V RL = 10kΩ CL = 50pF 35 20 1M Figure 8. OP282 Closed-Loop Gain vs. Frequency VS = ±15V RL = 10kΩ 40 10 +SR 10 00301-006 0 –75 –50 –25 0 25 50 75 100 0 –75 125 00301-009 5 5 –50 –25 TEMPERATURE (°C) 1000 +OS 50 –OS 30 20 00301-007 10 0 100 200 300 50 75 100 125 400 100 125 VS = ±15V VCM = 0V 100 10 1 0.1 –75 500 LOAD CAPACITANCE (pF) 00301-010 INPUT BIAS CURRENT (pA) VS = ±15V RL = 2kΩ 70 V = 100mV p-p IN AVCL = 1 60 TA = 25°C 0 25 Figure 9. OP282 Slew Rate vs. Temperature 80 40 0 TEMPERATURE (°C) Figure 6. OP282 Open-Loop Gain vs. Temperature OVERSHOOT (%) OPEN-LOOP GAIN (dB) 70 180 00301-008 80 –50 –25 0 25 50 75 TEMPERATURE (°C) Figure 7. OP282 Small Signal Overshoot vs. Load Capacitance Figure 10. OP282 Input Bias Current vs. Temperature Rev. G | Page 5 of 16 OP282/OP482 20 VS = ±15V TA = 25°C 100 10 1k 100 FREQUENCY (Hz) 0 –5 –10 VOL 00301-014 0 ±5 ±10 ±15 ±20 SUPPLY VOLTAGE (V) Figure 14. OP282 Output Voltage Swing vs. Supply Voltage 1000 VS = ±15V TA = 25°C 100 VS = ±15V TA = 25°C 100 OUTPUT IMPEDANCE (Ω) INPUT BIAS CURRENT (pA) 5 –20 10k Figure 11. OP282 Voltage Noise Density vs. Frequency 1000 VOH 10 –15 00301-011 1 10 TA = 25°C RL = 10kΩ 15 OUTPUT VOLTAGE SWING (V) VOLTAGE NOISE DENSITY (nV/√Hz) 1000 10 AVCL = 100 10 AVCL = 10 www.BDTIC.com/ADI 1 1 –10 –5 0 5 10 0.1 100 15 1k 10k FREQUENCY (Hz) COMMON-MODE VOLTAGE (V) Figure 12. OP282 Input Bias Current vs. Common-Mode Voltage 480 1M 480 TA = 25°C 475 SUPPLY CURRENT (µA) 470 465 460 470 465 460 0 ±5 ±10 ±15 450 –50 ±20 SUPPLY VOLTAGE (V) 00301-016 455 455 00301-013 SUPPLY CURRENT (µA) 100k Figure 15. OP282 Closed-Loop Output Impedance vs. Frequency 475 450 00301-015 0.1 –15 00301-012 AVCL = 1 –25 0 25 50 75 100 TEMPERATURE (°C) Figure 13. OP282 Supply Current vs. Supply Voltage Figure 16. OP282 Supply Current vs. Temperature Rev. G | Page 6 of 16 125 OP282/OP482 10 VOH 8 6 4 2 0 100 1k LOAD RESISTANCE (Ω) 25 20 15 10 5 0 100 10k Figure 17. OP282 Absolute Output Voltage vs. Load Resistance 1k 10k FREQUENCY (Hz) 140 VS = ±15V 120 TA = 25°C 1M VS = ±15V TA = 25°C 120 100 100 +PSRR 80 80 CMRR (dB) 60 40 20 –PSRR 60 40 20 www.BDTIC.com/ADI 0 0 –20 00301-018 –20 –40 –60 100 1k 10k 100k FREQUENCY (Hz) –40 –60 100 1M Figure 18. OP282 PSRR vs. Frequency 14 1k 10k 100k FREQUENCY (Hz) 1M Figure 21. OP282 CMRR vs. Frequency 200 VS = ±15V TA = 25°C VS = ±15V TA = 25°C 300 × OP282 (600 OP AMPS) 12 160 SINK 10 120 UNITS 8 SOURCE 6 80 4 0 –50 –25 0 25 50 75 100 0 –2000 125 00301-022 40 2 00301-019 SHORT-CIRCUIT CURRENT (mA) 100k Figure 20. OP282 Maximum Output Swing vs. Frequency 140 PSRR (dB) VS = ±15V TA = 25°C RL = 10kΩ AVCL = 1 00301-020 MAXIMUM OUTPUT SWING (V p-p) VOL 12 00301-017 ABSOLUTE OUTPUT VOLTAGE (V) 14 30 VS = ±15V TA = 25°C 00301-021 16 –1200 –400 0 400 1200 2000 VOS (µV) TEMPERATURE (°C) Figure 19. OP282 Short-Circuit Current vs. Temperature Figure 22. OP282 VOS Distribution SOIC_N Package Rev. G | Page 7 of 16 OP282/OP482 400 70 VS = ±15V 300 × OP282 (600 OP AMPS) 360 320 50 OVERSHOOT (%) 280 240 UNITS AVCL = 1 NEGATIVE EDGE VS = ±15V RL = 2kΩ VIN = 100mV p-p 60 200 160 120 AVCL = 1 POSITIVE EDGE 40 30 20 80 0 4 8 12 16 20 24 28 32 00301-026 0 10 00301-023 40 0 36 0 100 TCVOS (µV/°C) Figure 23. OP282 TCVOS Distribution SOIC_N Package 80 VS = ±15V TA = 25°C 60 0 500 VS = ±15V TA = 25°C 50 AVCL = 100 CLOSED-LOOP GAIN (dB) 135 PHASE (Degrees) 90 20 400 Figure 26. OP482 Small Signal Overshoot vs. Load Capacitance 45 40 40 30 AVCL = 10 20 10 www.BDTIC.com/ADI 180 0 AVCL = 1 0 10k 100k 1M FREQUENCY (Hz) 10M –20 00301-024 1k 100M 00301-027 –10 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 24. OP482 Open-Loop Gain, Phase vs. Frequency Figure 27. OP482 Closed-Loop Gain vs. Frequency 35 25 –SR VS = ±15V RL = 10kΩ 30 20 VS = ±15V RL = 10kΩ CL = 50pF SLEW RATE (V/µs) 25 20 15 10 15 10 +SR 0 –75 –50 –25 0 25 50 75 100 0 –75 125 TEMPERATURE (°C) 00301-028 5 5 00301-025 OPEN-LOOP GAIN (V/mV) OPEN-LOOP GAIN (dB) 60 300 200 LOAD CAPACITANCE (pF) –50 –25 0 25 50 75 100 TEMPERATURE (°C) Figure 25. OP482 Open-Loop Gain (V/mV) Figure 28. OP482 Slew Rate vs. Temperature Rev. G | Page 8 of 16 125 OP282/OP482 1000 1000 VS = ±15V TA = 25°C 1.0 10 1 –50 0 –25 0 25 75 50 100 0.1 –15 125 00301-032 10 0.1 100 INPUT BIAS CURRENT (pA) 100 00301-029 INPUT BIAS CURRENT (pA) VS = ±15V VCM = 0V –10 TEMPERATURE (°C) 5 10 1.15 4.5 GBW ØM 4.0 RELATIVE SUPPLY CURRENT (I SY) GAIN BANDWIDTH PRODUCT (MHz) 5.0 VS = ±15V RL = 10kΩ 15 TA = 25°C 1.10 1.05 1.00 www.BDTIC.com/ADI –50 –25 0 25 50 TEMPERATURE (°C) 75 100 3.0 125 0 20 OUTPUT VOLTAGE SWING (V) 50 40 30 20 100 1k 10 5 0 –5 –10 –15 00301-031 0 10 ±20 ±15 RL = 10kΩ TA = 25°C 15 60 10 ±10 Figure 33. OP482 Relative Supply Current vs. Supply Voltage VS = ±15V TA = 25°C 70 ±5 SUPPLY VOLTAGE (V) Figure 30. OP482 Phase Margin and Gain Bandwidth Product vs. Temperature 80 0.90 0.85 00301-030 40 –75 0.95 00301-033 3.5 00301-034 45 VOLTAGE NOISE DENSITY (nV/√Hz) PHASE MARGIN (Degrees) 60 50 0 Figure 32. OP482 Input Bias Current vs. Common-Mode Voltage Figure 29. OP482 Input Bias Current vs. Temperature 55 –5 COMMON-MODE VOLTAGE (V) –20 0 10k FREQUENCY (Hz) ±5 ±10 ±15 ±20 SUPPLY VOLTAGE (V) Figure 31. OP482 Voltage Noise Density vs. Frequency Figure 34. OP482 Output Voltage Swing vs. Supply Voltage Rev. G | Page 9 of 16 OP282/OP482 100 VS = ±15V TA = 25°C 500 80 400 60 300 –PSRR 40 20 200 AVCL = 10 100 0 0 100 1k 10k 00301-035 AVCL = 1 100k 00301-038 AVCL = 100 20 100 1M 1k FREQUENCY (Hz) 1.20 20 SHORT-CIRCUIT CURRENT (mA) 1.05 1.00 15 10 www.BDTIC.com/ADI 0.85 –50 –25 0 25 50 75 100 SOURCE 5 00301-039 0.90 00301-036 RELATIVE SUPPLY CURRENT (ISY) 1.10 0.80 –75 0 125 –75 TEMPERATURE (°C) –50 –25 0 25 50 30 NEGATIVE SWING 6 4 0 100 00301-037 2 1k 20 15 10 5 0 10k LOAD RESISTANCE (Ω) 00301-040 MAXIMUM OUTPUT SWING (V) POSITIVE SWING 8 125 VS = ±15V TA = 25°C AVCL = 1 RL = 10kΩ 25 10 100 Figure 39. OP482 Short-Circuit Current vs. Temperature VS = ±15V TA = 25°C 12 75 TEMPERATURE (°C) Figure 36. OP482 Relative Supply Current vs. Temperature ABSOLUTE OUTPUT VOLTAGE (V) 1M VS = ±15V SINK 1.15 14 100k Figure 38. OP482 Power Supply Rejection Ratio (PSRR) vs. Frequency VS = ±15V 0.95 10k FREQUENCY (Hz) Figure 35. OP482 Closed-Loop Output Impedance vs. Frequency 16 VS = ±15V ΔV = 100mV TA = 25°C +PSRR PSRR (dB) IMPEDANCE (Ω) 600 1K 10K 100K FREQUENCY (Hz) Figure 40. OP482 Maximum Output Swing vs. Frequency Figure 37. OP482 Maximum Output Voltage vs. Load Resistance Rev. G | Page 10 of 16 1M OP282/OP482 320 100 280 80 240 200 UNITS CMRR (dB) 60 40 160 120 20 80 –20 100 1k 40 10k 100k 0 1M 0 4 8 12 16 Figure 41. OP482 Common-Mode Rejection Ratio (CMRR) vs. Frequency 400 300 100 www.BDTIC.com/ADI 0 0 400 –2000 –1600 –1200 –800 –400 VOS (µV) 00301-045 UNITS 500 200 24 28 Figure 43. OP482 TCVOS Distribution P Package VS = ±15V TA = 25°C 300 × OP482 (1200 OP AMPS) 600 20 TCVOS (µV/°C) FREQUENCY (Hz) 700 00301-043 VS = ±15V TA = 25°C VCM = 100mV 00301-041 0 800 1200 1600 2000 Figure 42. OP482 VOS Distribution P Package Rev. G | Page 11 of 16 32 OP282/OP482 APPLICATIONS INFORMATION against phase reversal. R1, D2, and D3 limit the input current when the input exceeds the supply rail. The resistor should be selected to limit the amount of input current below the absolute maximum rating. V+ VIN HIGH-SIDE SIGNAL CONDITIONING D2 IN5711 R1 10kΩ D1 IN5711 V– Figure 45. Phase Reversal Solution Circuit One application where this is commonly used is in the sensing of power supply currents. This enables it to be used in current sensing applications, such as the partial circuit shown in Figure 44. In this circuit, the voltage drop across a low value resistor, such as the 0.1 Ω shown here, is amplified and compared to 7.5 V. The output can then be used for current limiting. VOLTAGE (5V/DIV) VS = ±15V 0.1Ω 500kΩ 100kΩ 100k Ω VOUT D3 IN5711 Many applications require the sensing of signals near the positive rail. OP282s and OP482s were tested and are guaranteed over a common-mode range (−11 V ≤ VCM ≤ +15 V) that includes the positive supply. 15V V+ V– OP282/ OP482 00301-042 The OP282 and OP482 are dual and quad JFET op amps that are optimized for high speed at low power. This combination makes these amplifiers excellent choices for battery-powered or low power applications that require above average performance. Applications benefiting from this performance combination include telecommunications, geophysical exploration, portable medical equipment, and navigational instrumentation. RL 2 www.BDTIC.com/ADI VOUT 1/2 VIN 00301-046 500kΩ Figure 44. High-Side Signal Conditioning 00301-044 OP282 TIME (200µs/DIV) Figure 46. No Phase Reversal ACTIVE FILTERS PHASE INVERSION Most JFET input amplifiers invert the phase of the input signal if either input exceeds the input common-mode range. For the OP282/OP482, a negative signal in excess of 11 V causes phase inversion. This is caused by saturation of the input stage leading to the forward-biasing of a gate-drain diode. Phase reversal in OP282/OP482 can be prevented by using Schottky diodes to clamp the input terminals to each other and to the supplies. In the simple buffer circuit in Figure 45, D1 protects the op amp The wide bandwidth and high slew rates of the OP282/OP482 make either one an excellent choice for many filter applications. There are many active filter configurations, but the four most popular configurations are Butterworth, elliptic, Bessel, and Chebyshev. Each type has a response that is optimized for a given characteristic as shown in Table 4. Table 4. Type Butterworth Chebyshev Elliptic Bessel (Thompson) Selectivity Moderate Good Best Poor Overshoot Good Moderate Poor Best Phase Nonlinear Amplitude (Pass Band) Maximum flat Equal ripple Equal ripple Linear Rev. G | Page 12 of 16 Amplitude (Stop Band) Equal ripple OP282/OP482 PROGRAMMABLE STATE VARIABLE FILTER fc = 1 ⎛ D1 ⎞ ⎜ ⎟ 2πR1C1 ⎝ 256 ⎠ The circuit shown in Figure 47 can be used to accurately program the Q, the cutoff frequency (fC), and gain of a two-pole state variable filter. OP482s have been used in this design because of their high bandwidths, low power, and low noise. This circuit takes only three packages to build because of the quad configuration of the op amps and DACs. The gain of this circuit is set by adjusting D3. The gain equation is The DACs shown are used in the voltage mode; therefore, many values are dependent on the accuracy of the DAC only and not on the absolute values of the DAC’s resistive ladders. This makes this circuit unusually accurate for a programmable filter. DAC 2 is used to set the Q of the circuit. Adjusting this DAC controls the amount of feedback from the band-pass node to the input summing node. Note that the digital value of the DAC is in the numerator; therefore, zero code is not a valid operating point. where D1 is the digital code for the DAC. Gain = Adjusting DAC 1 changes the signal amplitude across R1; therefore, the DAC attenuation times R1 determines the amount of signal current that charges the integrating capacitor, C1. This cutoff frequency can now be expressed as Q= R4 ⎛ D3 ⎞ ⎜ ⎟ R5 ⎝ 256 ⎠ R2 ⎛ 256 ⎞ ⎜ ⎟ R3 ⎝ D2 ⎠ R7 2kΩ R4 2kΩ 1/4 DAC8408 1/4 OP482 C1 1000pF R5 2kΩ 1/4 OP482 1/4 1/4 C1 1000pF R1 2kΩ www.BDTIC.com/ADI OP482 DAC8408 1/4 OP482 1/4 DAC8408 HIGH PASS 1/4 OP482 R1 2kΩ 1/4 OP482 LOW PASS BAND PASS R6 2kΩ R3 2kΩ R2 2kΩ 1/4 1/4 OP482 1/4 DAC8408 OP482 00301-047 VIN Figure 47. Programmable State Variable Filter Rev. G | Page 13 of 16 OP282/OP482 OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 0.65 BSC 0.95 0.85 0.75 1.10 MAX 0.15 0.00 0.38 0.22 COPLANARITY 0.10 0.80 0.60 0.40 8° 0° 0.23 0.08 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 48. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 4.00 (0.1574) 3.80 (0.1497) 8 1 5 4 6.20 (0.2441) 5.80 (0.2284) www.BDTIC.com/ADI 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 49. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-8) Dimensions shown in millimeters and (inches) Rev. G | Page 14 of 16 012407-A 1.27 (0.0500) BSC OP282/OP482 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 14 8 1 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 7 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.100 (2.54) BSC 0.060 (1.52) MAX 0.210 (5.33) MAX 0.015 (0.38) MIN 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) SEATING PLANE 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.015 (0.38) GAUGE PLANE 0.430 (10.92) MAX 0.005 (0.13) MIN 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) 070606-A COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 50. 14-Lead Plastic Dual In-Line Package [PDIP] P-Suffix (N-14) Dimension shown in inches and (millimeters) 8.75 (0.3445) 8.55 (0.3366) www.BDTIC.com/ADI 8 14 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 0.50 (0.0197) 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 51. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body S-Suffix (R-14) Dimensions shown in millimeters and (inches) Rev. G | Page 15 of 16 060606-A 4.00 (0.1575) 3.80 (0.1496) OP282/OP482 ORDERING GUIDE Model OP282ARMZ-R2 1 OP282ARMZ-REEL1 OP282GS OP282GS-REEL OP282GS-REEL7 OP282GSZ1 OP282GSZ-REEL1 OP282GSZ-REEL71 OP482GP OP482GPZ1 OP482GS OP482GS-REEL OP482GS-REEL7 OP482GSZ1 OP482GSZ-REEL1 OP482GSZ-REEL71 1 Temperature Range −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 14-Lead PDIP 14-Lead PDIP 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N Package Option RM-8 RM-8 S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) S-Suffix (R-8) P-Suffix (N-14) P-Suffix (N-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) S-Suffix (R-14) Z = RoHS Compliant Part. www.BDTIC.com/ADI ©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00301-0-7/08(G) Rev. G | Page 16 of 16 Branding A0B A0B