Download Battery Charge Regulator (BCR)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Electromagnetic compatibility wikipedia , lookup

Stepper motor wikipedia , lookup

Power inverter wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Portable appliance testing wikipedia , lookup

Electrical ballast wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Three-phase electric power wikipedia , lookup

P–n diode wikipedia , lookup

Multimeter wikipedia , lookup

Islanding wikipedia , lookup

History of electric power transmission wikipedia , lookup

Ohm's law wikipedia , lookup

Electrical substation wikipedia , lookup

Metadyne wikipedia , lookup

Rectifier wikipedia , lookup

Current source wikipedia , lookup

Power electronics wikipedia , lookup

Triode wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Power MOSFET wikipedia , lookup

Schmitt trigger wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Distribution management system wikipedia , lookup

Opto-isolator wikipedia , lookup

Buck converter wikipedia , lookup

Alternating current wikipedia , lookup

Surge protector wikipedia , lookup

Voltage regulator wikipedia , lookup

Stray voltage wikipedia , lookup

Voltage optimisation wikipedia , lookup

Mains electricity wikipedia , lookup

Transcript
SNI 04-6391-2000
Standar Nasional Indonesia
English version
Battery Charge Regulator (BCR) – Electrical Requirements
and Test Procedures
i
Badan Standardisasi Nasional
ii
Contents
Foreword.
…………………………………………………………………………………………….ii
Introduction..…….……………………………………………………………………………
….iii
1. Scope
…………………………………………………………………………………………... 1
2. Reference. 1
3. Term and Definition.
…………………………………………………………………………. 1
4. Documentation.
………………………………………………………………………………. 3
5. Marking/Labeling
……………………………………………………………………………… 4
6. Sampling
……………………………………………………………………………………….. 4
7. Pass Criteria and BCR Certification. 4
8. BCR Qualification
…………………………………………………………………………….. 5
iii
Prakata
Foreword
Penerapan dan pemanfaatan berbagai Sistem Fotovoltaik di Indonesia telah berlangsung sejak
awal tahun 1980-an. Pengkajian kelayakan penerapan sistem fotovoltaik dimulai dari Pilot
Proyek Solar Village (bekerjasama dengan TÜV Rheinland, Jerman) pada awal tahun 1980an, kemudian dilanjutkan dengan Pilot Proyek Village Electrification & Pumping System
(Kerjasama NEDO, Jepang) di Kenteng, Yogyakarta pada tahun 1987. Pada tahun 1990
setelah sukses dalam penerapan Solar Home System (SHS) di desa Sukatani, Jawa Barat,
dimulailah penyebarluasan sistem Fotovoltaik untuk penerangan pedesaan melalui Proyek
Banpres dengan memasang 3445 unit SHS di 15 Propinsi Indonesia. Sejak saat itu sistem
Fotovoltaik sudah dikenal luas dalam masyarakat. Pada tahun 1998 dengan dicanangkannya
Proyek Sejuta Rumah: 50 MWp Photovoltaic Rural Electrification, maka dimulailah era
komersialisasi sistem-sistem Fotovoltaik.
Untuk mengantisipasi makin berkembangnya bisnis dalam bidang fotovoltaik, maka
diperlukan standar spesifikasi teknis, pedoman dan metoda uji komponen serta prosedur
penentuan kualifikasi rancangan dan klasifikasi peringkat sistem fotovoltaik termasuk Sistem
Fotovoltaik Individual (SFI) atau SHS. Standarisasi ini mempunyai maksud ganda: guna
melindungi konsumen dari ketidaksesuaian spesifikasi komponen/sistem yang dijual di
pasaran, dan melindungi produsen dari akibat kesalahan persepsi dari masyarakat dalam
pemanfaatan sistem fotovoltaik. Dengan adanya standar diharapkan para produsen dan agen
juga dapat mempunyai satu dasar perhitungan yang sama untuk mengklasifikasikan sistem
fotovoltaik yang dijualnya ke dalam satu sistem peringkat.
Dalam bidang standarisasi, Indonesia telah cukup lama terlibat dalam penyusunan dan
pengusulan standarisasi khususnya SHS ke forum internasional. Pada saat Proyek Banpres
dimulai, spesifikasi teknis SHS yang digunakan untuk proyek ini juga dimanfaatkan oleh
World Bank dan AusAID sebagai standar SHS untuk dipasarkan di beberapa negara
berkembang. Spesifikasi teknis ini kemudian diusulkan oleh TÜV Rheinland sebagai anggota
tetap IEC/TC-82 ke forum IEC/TC-82 (International Electrotechnic Commission/Technical
Committee 82: Solar Photovoltaic) sebagai masukan untuk Draft Standar SHS. Dengan
demikian Rancangan Standar Nasional Indonesia (RSNI) yang dibuat ini mengacu pada
Draft SHS dari standar IEC/TC-82 yang didalamnya memasukkan spesifikasi teknis yang
dibuat oleh Indonesia.
iv
Pendahuluan
Introduction
Standar BCR (Battery Charge Regulator) untuk pemakaian pada SHS (Solar Home System)
ini disusun berdasarkan beberapa referensi standar BCR yang ada, katalog komponen yang
berhubungan dengan komponen di BCR , teori (“text book”) yang berhubungan dengan disain
rangkaian BCR seperti teori “switching”, komparator, dan dioda, serta pengalaman pengujian
BCR dari produksi yang ada sampai saat ini.
Dalam perkembangannya, SHS lebih banyak digunakan dinegara berkembang dan/ atau
negara tropis seperti misalnya di Indonesia, Philipina, Thailand, Meksiko, negara-negara
Afrika, negara-negara Arab dll. Sedangkan negara maju seperti negara-negara Eropa, Jepang
dan Amerika Serikat belum siap dalam menyusun standar BCR khusus untuk SHS.
Oleh karena standarisasi di Indonesia ini, khusus untuk sistem Fotovoltaik, menggunakan
referensi standar Eropa yaitu IEC TC-82, maka dalam penyusunan standar SNI untuk BCR
inipun tetap merujuk pada “draft” standar IEC yang pernah disusun.
Standar SNI untuk BCR yang disusun sekarang ini ditekankan pada pengujian kualitas unjuk
kerja elektris. Adapun kualitas yang lain seperti pengujian mekanikal dan “safety” akan
disusun pada tahap berikutnya sesuai dengan perkembangan BCR dan standar Internasional.
Kualifikasi unjuk kerja elektrikal BCR ini, khusus diterapkan untuk pemakaian SHS di
Indonesia, baik BCR produksi Lokal (Indonesia) maupun produksi Luar Negeri (Import),
dengan tidak menutup kemungkinan BCR hasil pengujian ini dapat diekspor.
.
v
Battery Charge Regulator (BCR) – Electrical Requirements and Test Procedures
1. Scope
The scope of this standard comprises BCR for lead acid battery with liquid electrolyte
(Vented or sealed)
The tests describe in this standard are valid for BCR which use the battery terminal voltage
as criterion for operation. As well as modern control procedure (for example: state of charge
algorithm).
The following standard govern the requirement of BCR, which is installed permanently in
photovoltaic system, especially for small domestic power supply (Solar Home Systems,
SHS). with system voltage is limited up to 50 Vdc and photovoltaic generator with maximum
of 500 Wp, to which the BCR intended for examination have been adapted.
Mechanical examination is not discussed in this standard and will be elaborate in other
standard.
2. Reference
pR EN 50314- 3, 1999, Photovoltaic system- Charge Regulators
Part 3 performance- Test requirement and Procedures.
xxx @ IEC 1997 Draft IEC standard: Charge regulator part 1: Safety- Test requirement and
procedure.
3. Term and definition
BCR in PV stand alone systems served to match the supply of PV electricity as delivered by
the PV module to characteristic of lead acid batteries by limiting excess gassing and water
loss by:
-
Reducing the charge current of PV module such as that a certain voltage (high voltage
disconnect) is not exceeded.
Limiting deep discharge of the battery is accomplish by automatic disconnect of the load
circuit when the battery voltage decreases below a certain voltage (low voltage
disconnect)
Limiting both voltages is intended to increase the cyclic lifetime of the battery.
High voltage disconnect (end of charge voltage)/ final charge voltage
High voltage reconnection
Low voltage disconnect/final discharge voltage
Low voltage reconnection
Activated gassing voltage
Charge equalization voltage
Depth of discharge
State of Charge
BCR with two point controlled regulation (on-off BCR)
Pulse with modulation BCR
Series BCR
Shunt/Parallel BCR
Vnom: Nominal voltage
Vgas: Gassing voltage
Vmaks: BCR maximum voltage
Vpv: PV voltage at PV terminal in BCR
Vb: Battery voltage at battery terminal in BCR
: Load voltage at load terminal in BCR
VL
: BCR maximum current input
Chalks
ILmaks: BCR maximum current output
: Load current
IL
IPV: PV simulator current
Ib: Battery simulator current
: Digital multimeter for voltage measurement
V
I
: Digital multimeter for current measurement
4. Documentation
Documentation in Indonesian should content of the following:
−
−
−
−
−
−
−
−
Installation instruction
Operation instruction
BCR technical data
Trouble shooting
Safety precaution
Part list
Warranty period
Block diagram
BCR technical documentation should mention following:
4.1
Environment condition:
− Range of operational temperature
− Maximum relative humidity
− Range of storage temperature
4.2
−
−
−
−
−
−
BCR Physical properties:
Case dimension
Weight
Case material
Fastener
Connector terminal
Cables (inlet/cross section)
4.3
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
Technical specification:
Nominal voltage
Maximum module current (A)
Maximum load current (A)
Type of regulator (series or shunt)
Working principal (PWM, two-point-regulation; SOC algorithm; etc.)
Switching threshold (V)
Range of voltage threshold
Power consumption (no load)
Losses
Overload protection
Reverse polarity protection
Capability of switching to accommodate different nominal voltage
Warning sign when load will be disconnected
Load disconnect with time delay
Display (color LED, accuracy and compatibility)
5. Marking/ Labeling
BCR should be labeled/ marked and contents the following:
−
−
−
−
−
−
−
Name of manufacture (trade mark; manufacture or responsible dealer)
Model or BCR type
Serial number
Nominal voltage
Maximum PV module input current
Maximum load current
Terminal should be labeled confirm with the connection (PV, battery and load).
All display should be labeled and confirm with all its function (indicating full battery, empty
battery, PV On; etc). Type and capacity of fuse should also mention
6. Sampling
Four BCR for qualification testing shall be taken at random from a production batch, in
accordance with the procedure given in IEC 60410. BCR shall have been manufactured from
specified material and components in accordance with the relevant drawing and process
sheets and have been subjected to the manufacture’s normal inspection, quality control and
production acceptance procedures. When the BCR to be tested is a prototype of a new
design and not from production, this fact shall be noted in the test report.
7. Pass criteria and BCR certification
The four BCR from the same production lot are required, and then one sample is taken for
inspection of completeness documentation and marking.
The four samples are observed visually and tested functionally. When they are passed
function test, two samples are selected to undergo the detail test, which are electrical
performance test according to drawing no 1.while the other two samples served as
replacement.
Should one BCR fail any test; another two BCR shall be subjected to the whole of the
relevant test from the beginning. If one or both of these BCR also failed, the design shall be
deemed not to have met the qualification requirement. If however both BCR pass the test
sequence the design shall be judge to have met the qualification requirement.
All testing result should be documented in a report, if the samples obtain the pass criteria then
it is awarded a BCR qualification test pass certificate according to the type / model related
production.
8. BCR qualification
BCR qualification test consist of 3 steps,
8.1
Visual observation
Visual observation is stressed on the possibility of any defect/damage, inconformity and/or
any deviation of BCR physical construction. Generally, the physical observation should
include,
−
−
−
−
−
BCR Casing
Terminal and connector
Display indicator
Electronic component, PCB (printed circuit board)
Cabling and soldering
The practical aspect in repairmen ( assemble/re assemble when it is necessary to repair the
BCR). Any peculiarities observed must be conscientiously documented, if necessary by
means of photography.
8.2
Functional test
8.2.1 Purpose
This functional test is intended to test whether BCR can be functional as it should be. Such as
following,
− Circuit disconnection between PV module and battery at high voltage disconnect level and
reconnect again at predetermined voltage level which is stated in technical specification.
− Circuit disconnection between load and battery at low voltage level and reconnect again at
predetermined voltage level which is stated in technical specification.
− This functional test is conducted accordance with the type or working principle of BCR
stated in technical specification.
8.2.2 Test equipment
The test equipment use should be calibrated, and the calibration status still valid at the time
of qualification. ( see figure 2.)
8.2.3 Qualification procedures
Connect BCR that will be qualify as the configuration in figure 2. All the equipment should
be in off position prior to the connection.
8.2.3.1 End of charge voltage test
a)
b)
c)
d)
Set battery simulator voltage 1,05 x Vnom.
Set the load (RL) until IL = 0,5 x ILmaks
Set IPV until 0,5 x Ichmax.obtained
Increase battery simulator voltage gradually with the increment of 0.2 volt, wait for 30
second while observing any alteration on IPV and VPV
e) Repeat step d) until PV simulator and battery simulator circuit disconnected. This will be
shown by both equipment in the following condition,
Series BCR Type:
− With two point control: PV simulator will be in open circuit condition, while voltage
limiter will be activated (Active display)
− PWM: Open circuit voltage pulse initiated at PV input terminal in BCR (switching
between system voltage and PV simulator open circuit voltage). To observe this condition,
use oscilloscope.
Shunt BCR Type :
− With two point control. : PV simulator will be in short circuited condition.
− PWM: Short circuit voltage pulse initiated at PV input terminal in BCR (switching
between system voltage and PV simulator short circuit voltage.). To observe this
condition, use oscilloscope.
NOTE: approaching end of charge voltage, the voltage addition is 0.05 volt. Record the value
of upper limit voltage at the terminal Vb.. For the measuring the upper limit reconnection
battery simulator voltage should be decreased gradually by increment of 0.2 volt.
8.2.3.2 Testing of upper limit voltage of BCR with equalization voltage.
This procedure is implemented when the BCR equipped with equalization voltage. (Charge
equalization voltage).
a) Execute step 8.2.3.1, point-to-point e) until upper limit voltage is reached. Set PV
simulator current at 0,2 x Ichmaks.
b) Decrease battery simulator voltage gradually (by 0,2 Volt) and observed for about 30
seconds until reconnection of upper limit voltage is reached.
c) Continue step 8.2.3.2 b) until just a little bit under activated voltage Vgas
d) Increase battery simulator voltage as procedures in step 8.2.3.1 point d) and e). If the
battery simulator voltage has approach equalization voltage then increases battery
simulator voltage as mention in step 8.2.3.1 point e). Record activation voltage Vgas and
equalization voltage.
If several equalization voltage are obtained, repeat 8.2.3.2 a) to d) according to voltage values
given by related BCR technical data in documentation. Record activation voltage Vgas and
equalization voltage.
8.2.3.3 Testing of lower limit voltage
a) Execute 8.2.3.2 a), b), and c) until load disconector alarm is triggered (if available),
Record load disconector alarm voltage.
b) Execute 8.2.3.2 b), and c) until lower limit voltage is reached, Record this voltage.
c) Execute 8.2.3.2 d) until lower limit reconnection voltage is reached, Record this voltage.
8.2.3.4 Functional test pass criteria
BCR under qualification has characteristic as mention in the documentation. Allowable
deviation of voltage is ± 0,1 Volt. Recommended BCR operating voltage for SHS
implementation is as follow:
−
−
−
−
Upper limit voltage: (13,8 to 14,5) Volt
Upper limit reconnection voltage: has hysterisis with ∆ < 0,5 Volt.
Lower limit voltage: (11, 2 to 11,7) Volt
Lower limit reconnection has hysterisis with ∆ > 1,0 Volt.
If BCR using PWM with equalization voltage, it is recommended that the following values is
fulfilled:
− Equalization voltage: (14,5 to 15,1) Volt
− Upper limit voltage: (13,8 ± 0,1) Volt
− Activation voltage Vgas: (11,2 to 12,6) Volt
NOTE: These values are for 12-volt battery nominal voltage, other nominal voltage should be
adjusted according with related cell voltage.
8.3
Detail test
8.3.1 Power consumption test without load
8.3.1.1 Purpose
To test losses in BCR while there is no additional energy input from PV module and load
disconnected.
8.3.1.2 Procedure
a) Use circuitry mention in figure 2, with PV simulator and load at off condition
b) Set battery simulator voltage at lower limit position;
c) Measure Ib starting from lower limit voltage to upper limit voltage with increment of 0,5
Volt. Record Ib and observe LED indicator;
d) Repeat the measurement, by decreasing battery simulator voltage, starting from upper
limit voltage to lower limit voltage. (Opposite of point c).
8.3.1.3 Power consumption test without load pass criteria
Sample is stated as passing the test, if current consumption <10 mA for all BCR operation
voltage range.
8.3.2 Switching test at upper limit voltage
This test also called as current compensation test.
8.3.2.1 Purpose
To test BCR’s upper limit voltage connection and disconnection capability and threshold
stability for all Ipv.values
8.3.2.2 Procedures
Execute 8.2.3.1 for BCR with two-pint control and 8.2.3.2 for BCR with equalization voltage.
Both procedures implemented for Ipv at 0,5 A.
Repeat procedures above with Ipv at 10%, 50% and 100% from Ichmaks.
8.3.2.3 Switching test at upper limit voltage pass criteria
Sample is stated as passing the test, if switching capability of upper limit voltage confirm with
its function and has threshold value with tolerance of ± 0,1 Volt for all Ipv.values.
8.3.3
Switching test at lower limit voltage
8.3.3.1 Purpose
To test the switching capability at lower limit voltage and the stability of threshold at all IL
values.
8.3.3.2 Procedures
Execute 8.2.3.3 for IL at 0,5 A. Repeat the test with IL at 10%, 50% and 100% from ILmaks.
8.3.3.3 Switching test at lower limit voltage pass criteria
Sample is stated as passing the test, if switching capability of lower limit voltage confirm with
its function and has threshold value with tolerance of ± 0,1 Volt for all IL..values.
8.3.4
Voltage drop and efficiency test at PV – Battery terminal in BCR
8.3.4.1 Purpose
To test voltage drop and power losses at PV – Battery terminal in BCR
8.3.4.2 Procedure
a) Use the circuitry in figure 2. Without load. PV simulator and Battery simulator at on
condition.
b) Set PV simulator voltage at PV open circuit condition voltage in accordance with BCR
utilization, and set Ipv at 10% from Ichmaks
c) Set battery simulator voltage at 1,05 Vnom
d) Record Vpv, Ipv, Ib and Vb
e) Repeat a) to d) for Ipv , at 50% and 100% from Ichmaks
8.3.4.3 Voltage drop and efficiency test at PV – Battery terminal pass criteria
Sample is stated as passing the test if value of voltage drop at PV – battery terminal < 5% I
Vnom for Ichmaks.
8.3.5
Voltage drop and efficiency test at Battery – Load terminal in BCR
8.3.5.1 Purpose
To test the voltage drop and the power losses measure at the battery-load terminal in BCR.
8.3.5.2 Procedure
a)
b)
c)
d)
e)
Use the circuitry in figure 2. Without PV simulator. Battery simulator at On condition
Set IL at 10% ILmaks
Set battery simulator voltage at 1,05 Vnom
Record Vb, Ib, IL and VL
Repeat b) to d) for IL at 50% and 100% ILmaks
8.3.5.3 Voltage drop and efficiency test at Battery – Load terminal pass criteria
Sample is stated as passing the test if the voltage drop value at Battery-Load terminal < 5% I
Vnom for ILmaks.
8.3.6
BCR endurance test at maximum capacity
8.3.6.1 Purpose
To test BCR capability at maximum capacity for 1 hour (continuously)
8.3.6.2 Procedure
a) Use circuitry diagram in fig 2.
b) Set Vb = 1,05 Vnom and Ib at 110% Ichmaks;
c) Set Ipv voltage equal to PV module open circuit voltage, according to BCR utilization and
set Ipv = Ichmaks;
d) Put temperature sensor on one of the following components, blocking diode, FET or heat
sink of related component
e) Set IL = ILmaks. Record Ipv, Vpv, Ib, Vb, IL, VL and temperature every 15 minute;
f) If the temperature of blocking diode or FET show the tendency of increasing drastically
along the testing period, then the time should be extend for another 1 hour
8.3.6.3 BCR endurance test at maximum capacity passing criteria
Sample is stated as passing this test if following test 8.2 the sample still operate functionally
8.3.7
over load protection test
8.3.7.1 Purpose
To test overload protection function in accordance with given technical specification.
8.3.7.2 Precondition
Overload protection function should work properly whenever load current reaching 125%
ILmaks. This function may be realized by using mechanical fuse or electronically.
8.3.7.3 Procedures
a) Use figure 2 with following condition:
− PV Simulator at Off condition
− Set battery simulator voltage at 1,05 Vnom, and battery simulator current at 150% ILmaks
− Set IL = ILmaks
b) Increase the value of IL gradually until 125% ILmaks
c) Observe whether there is any load disconnection during the increase of IL up to 125%
ILmaks
d) Record IL as a point of protection. If protection in the form of electronic circuit
(automatic) observed the way the protection working for about 10 minute and measure IL
(use Oscilloscope when it is necessary).
If overload protection is while IL reach 125%, repeat b), c) and d) for IL starting from 100%
up to 150% with current increase at 5%. Observe increase of IL every 5 minutes, if there is no
disconnection, stop the test
8.3.7.4 Overload protection test pass criteria
Sample is stated as passing the test if the overload protection works properly
8.3.8 Reverse polarity protection test
8.3.8.1 Purpose
To test BCR’s reverse polarity protection function
8.3.8.2 Procedure
a) Use figure 2 without load, Connect load to BCR by reversing the polarity;
b) Set battery simulator voltage at Vnom, and increase PV Simulator voltage starting from 0
Volt up to open circuit voltage
c) Observe both BCR and the test equipment. Record VL, Ipv and Ib;
d) Use figure 2 without load. Connect battery simulator to BCR by reversing the polarity
e) Set PV simulator at PV open circuit, increase battery simulator voltage starting from 0
Volt up to Vgas.
f) Observe both BCR and the test equipment. Record VL, Ipv and Ib
g) Use figure 2. Without load. Connect battery simulator to BCR, connect BCR to PV
simulator, both connection is set in the reverse polarity condition
h) Set battery simulator voltage at 1,05 Vnom, and increase Vpv starting from 0 Volt up to PV
open circuit voltage;
i) Observe both BCR and test equipment. Record VL, Ipv and Ib
8.3.8.3 Reverse polarity protection test pass criteria
Sample is stated as passing the test if it is not damage during the test
8.3.9 Voltage sensor cable (if available) test
8.3.9.1 Purpose
To test the safety of BCR, when the sensor cable in the open circuit or short circuit condition.
8.3.9.2 Procedure
Observe the stability of BCR threshold voltage, in both open circuit and short circuit
condition.
8.3.9.3 Voltage sensor cable test pass criteria
BCR is in safety condition
8.3.10
Temperature sensor cable (if available) test
8.3.10.1 Purpose
Observe whether BCR is in safety condition, if sensor cable at open circuit and short circuit
condition.
8.3.10.2 Procedure
Observe the stability of BCR threshold if sensor cable is in open circuit or short circuit
condition.
8.3.10.3 Temperature sensor cable test pass criteria
BCR is in safety condition
8.3.11
Temperature compensation at threshold voltage (if available) test
8.3.11.1 Purpose
To inspect the possibility of alteration in threshold voltage caused by temperature alteration
and inspects temperature compensation, which is caused by battery temperature.
8.3.11.2 Equipment
Use the equipments in accordance with figure 2. And climate chamber where temperature
could be condisionized in the range +20 0C to +55 0C.
8.3.11.3 Precondition
Lower limit voltage should be stable in the temperature range. On the contrary upper limit
voltage and Vgas need temperature compensation so that battery-charging characteristic can
adjust to environment temperature. Compensation is functioning on upper limit voltage and
upper limit reconnection voltage for two-point control BCR with constant hysterisis voltage.
Lower limit voltage should keep stable with tolerance of ± 0,3 Volt and threshold of overload
protection and reconnection voltage should have temperature coefficient (– 3) up to (– 5) mV/
K per cell.
8.3.11.4 Procedure
a) Threshold voltage is tested accordance with functional test 8.2 with test temperature as
following 20 0C, 25 0C, 55 0C and 20 0C;
b) BCR or temperature sensor should keep at each temperature for at least 15 minute;
c) If temperature sensor of BCR mounted externally, then only this sensor conditionized at
each above temperature. while the BCR itself operating in ambient temperature.. If BCR
does not has external temperature sensor, then the whole BCR should conditionized at
each above temperature.
8.3.11.5 Temperature compensation at threshold voltage test pass criteria
Sample is stated as passing the test if it is confirm with 8.3.11.3.
8.3.12
Threshold voltage regulation (if available) range test
8.3.12.1 Purpose
To identify whether the regulation could be done at threshold voltage which is suit to
recommendation in accordance with point 8.2.3.4.
8.3.12.2 Procedure
a) Regulation is executed for each existing threshold voltage. which are regulate upper limit
voltage, lower limit voltage, temperature compensation, and current compensation.;
b) Put threshold regulator at minimum position and measured the threshold voltage.
c) Put threshold regulator at maximum position and measure threshold voltage
d) Put the threshold regulator back to the initial position
8.3.12.3 Threshold voltage regulation (if available) range test pass criteria
Sample is stated as pass test criteria if threshold regulator still in the recommended limits
accordance with point 8.2.3.4.
Figure 1. Flowchart
4 Specimens
1 Specimen
Documentation
Visual Inspection
Marking/Labeling
Function Test
2 Specimens
2 Specimens
Self-Consumtion Test at No Load
High Voltage Disconect and Reconect Test
Low Voltage Disconect and Reconect Test
Voltage Drop Test PV-Battery
Volateg Drop Test Battery-Load
Endurance Test
Function Test
Overload Protection Test
Function Test
Reverse Polarity Test
Funtion Test
Voltage Sensor Cable Test
Temperature Sensor Cable Test
Temperature Compensation Test
Threshold Voltage Range Test
Uji Fungsi
Report
If needed
Ipv
PV
Simulator
IL
Vpv
VL
BCR
Vb
Ib
Battery
Simulator
Figure 2. Test Configuration
Dummy
Load
( RL )