* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download ENE 623 - web page for staff
Optical amplifier wikipedia , lookup
Dispersion staining wikipedia , lookup
Fourier optics wikipedia , lookup
Harold Hopkins (physicist) wikipedia , lookup
Optical rogue waves wikipedia , lookup
3D optical data storage wikipedia , lookup
Optical aberration wikipedia , lookup
Nonimaging optics wikipedia , lookup
Fiber-optic communication wikipedia , lookup
Passive optical network wikipedia , lookup
Gaseous detection device wikipedia , lookup
Scanning electrochemical microscopy wikipedia , lookup
Ellipsometry wikipedia , lookup
Optical coherence tomography wikipedia , lookup
Surface plasmon resonance microscopy wikipedia , lookup
Ultrafast laser spectroscopy wikipedia , lookup
Refractive index wikipedia , lookup
Photon scanning microscopy wikipedia , lookup
Optical tweezers wikipedia , lookup
Anti-reflective coating wikipedia , lookup
Retroreflector wikipedia , lookup
Birefringence wikipedia , lookup
Wave interference wikipedia , lookup
Mode-locking wikipedia , lookup
Magnetic circular dichroism wikipedia , lookup
Opto-isolator wikipedia , lookup
Lecture 7 Tunable Semiconductor Lasers  What determines lasing frequency:  Gain spectrum  A function of temperature.  Optical length of cavity  Mirror reflectance spectrum  Any perturbation which affects refractive index and/or lasing frequency. Single frequency laser  DFB and DBG lasers  Tuning achieved by changing heat sink temperature.  Tuning by changing bias current which affects the number of carriers in tuning region. 4 nL M M  4 M nL   2M  ; M  integer c cM 2nL Modulators  Mach-Zehnder modulators (electro-optic modulators)  Electro-absorption modulators Phase Modulators l       ne3r33  V  g Electrooptic Modulator (A) Directional coupler geometry (B) Mach-Zehnder configuration Mach-Zehnder modulator  Solve wave equation for mode field distribution & propagation constant. u ( x , y , z )  u ( x, y ) e  i  z 2 neff   neff  neff V  0   kV  where k = constant Mach-Zehnder modulator v Pi Po  Thus, by applying V will cause a phase shift for propagating mode. Mach-Zehnder modulator  By symmetry, equal amplitudes in 2 arms after passing through the first branch. Mach-Zehnder modulator  For the second branch, output depends on relative phases of combining waves:  2 waves in phase.  2 waves  rad out of phase Mach-Zehnder modulator  Wave amplitudes Pout  A 2 out Ain2 i1  e  ei2 4 2 Mach-Zehnder modulator i1 e e i2 2   cos 1  cos 2    sin 1  sin 2  2  cos 2 1  cos 2 2  2 cos 1 cos 2  sin 2 1  sin 2 2  2sin 1 sin 2 Pin 1  cos 1  2   Pout  2 2 Mach-Zehnder modulator Pout = Pin  1  2   2M  ; M  integer Pout = 0  1  2   0 1  0  cV 2  0  cV 1  2   2cV  2 L  n eff 1  neff 2  Mach-Zehnder modulator  V is a swiching voltage which give Pout -rad phase difference.  V is determined by material and electrode configuration.  V is different for dissimilar polarizations. Pin Pout  2  V 1  cos     V    Diffused optical waveguides  Diffused optical waveguides: Ti:LiNbO3 indiffused waveguides.  Waveguide modes (linearly polarized or ‘LP’):  TE mode – light polarized in plane of substrate surface  TM mode – light polarized normal to plane of substrate surface. Diffused optical waveguides nTE ( x, y, z )  nsub / TE  nwg / TE ( x, y, z )  ne.o./ TE ( x, y, z ) nTM ( x, y, z )  nsub / TM  nwg / TM ( x, y, z )  ne.o./ TM ( x, y, z )  Ti indiffused waveguides: Ti metal atoms cause refractive index increase for both TE and TM waves.  Proton exchanged waveguides: H atoms exchange with Li atoms in lattice. Refractive index increases for only one polarization; e.g, TE mode. Diffused optical waveguides  For digital transmission, different V could degrade ‘on-off radio’ or OOR. Ideally, we want OOR to be close to infinity.  Solutions for that are:  Use polarized optical input.  Use proton exchanged waveguides to eliminate TM modes (get Pout only for TE mode). Example  Consider a Mach-Zehnder modulator with an electrode length of 2 cm and electrode gap width g of 12 mm, such that neff / TE  KTE E neff / TM  KTM E with E the applied electric field, assumed to be constant between the electrodes, and KTE = 5.8 x 10-10 m/V and KTM = 2.0 x 10-10 m/V. What is VTE and VTM ? Note: neff = n0 + Δn in one arm and neff = n0 - Δn in the other arm.
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            