* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Actin
Metalloprotein wikipedia , lookup
Beta-Hydroxy beta-methylbutyric acid wikipedia , lookup
Western blot wikipedia , lookup
Signal transduction wikipedia , lookup
Interactome wikipedia , lookup
Biochemistry wikipedia , lookup
Two-hybrid screening wikipedia , lookup
Protein–protein interaction wikipedia , lookup
Skeletal Muscle ~40-45% of BW 400+ in body Responsible for all movement and support Composition 75% water 20% protein 5% other: fats, CHO, high energy phosphates, urea, lactic acid, enzymes, Na+, K+, Cl-, and minerals: Ca2+, Mg, and phosphorous Striated in Apperance Structure is fascia and connective tissue sheaths which separate individual muscles and hold muscles in place Under fascia: epimysium, CT surrounding muscle Under epimysium: fascicles, bundles of muscle fibers enclosed by perimysium – There are ~150 fibers/fasciculus Fasciulus Bundle of muscle cells (fibers) surrounded by perimysium Each fiber in fasciulus is surrounded by endomsysium Under endomysium is sarcolemma, cell membrane Connective tissue surrounds muscle and forms a network that extends throughout the muscle Sarcoplasm Cytoplasm of muscle cell Under sarcolemma Contains contractile proteins, enzymes, fat, and glycogen particles, nuclei, and specialized cellular organelles Proteins Greatest amounts: Myosin Actin Tropomysin Also, large amounts of myglobin Muscle cells Multi-nucleated Striated appearance Sarcoplasmic Reticulum (SR) Embedded in sarcoplasm Network of channels and vessicles Lies in parallel to the myofibrils Lateral end: sac-like cistern which stores Ca2+ Transverse Tubules (T-Tubules) Perpendicular to myofibril T-tubule and two terminal cisternae are the region of the Z-line Called a triad Two triads/sarcomere One sarcomere: Z line – Z line T-tubules open to the outside of each muscle fiber Functioning as a network, spreading the AP from outer to inner portion of muscle fiber Muscle Blood supply With exercise, increase in blood flow to muscle Myosin molecule composed of 6 polypeptide chains 2 heavy 4 light One myosin filament is made up of 200 or more myosin molecules Exactly 1.6 micrometers in length Tails are in center Heads coming out from the center (0.2 micrometers) hinges at two points – arm separates from the filament – where the head attaches to the arm filament is twisted, cross-bridges are displaced from previous set by 120° Insures that cross-bridges extend in all directions from the filament Actin Primary protein in thin filament Forms the backbone of filament Approximately 3000 actin/myofibril Troponin and Tropomyosin Two other proteins in filament Two shapes of actin 1. Globular (G-actin) polymerizes and unfolds into 2. Fibrous (F-actin) double stranded in helix, complete revolution every 70 nanometers 13 G-actin molecules in each revolution of the helical strand Each G-actin has an ADP molecule attached to it ADP are purported to be the active sites on the actin for cross-bridge interaction Active sites are staggered, one site on total filament every 2.7 nanometers each actin is 1 micrometer long Filament bases Inserted into Z discs, other end protrudes into sarcomere In spaces between myosin molecules Z line Actin filaments extending from either side Into neighboring sarcomeres Passes from myofibril to myofibril Attaching the myofilaments to each other across the muscle fiber Sarcomere Basic contractile unit, from Z line to Z line Tropomyosin Associated with the actin filament Loosely connected to the F-actin strands Wrap themselves spirally around the sides of the F-actin helix At rest, tropomyosin molecules lie on top of the actin active sites, inhibiting interaction between actin and myosin each tropomyosin covers about seven active sites Troponin Protein attached near one end of each tropomyosin molecule Complex of 3 protein subunits 1. Troponin I (TnI) strong affinity for actin 2. Troponin T (TnT) strong affinity for tropomyosin 3. Troponin C (TnC) strong affinity for calcium Troponin complex may attach the tropomyosin to the actin Each subunit plays a role in the contractile process Sarcomere Ultrastructure alternating light and dark bands along the length of the muscle fiber give it its characteristic striated appearance Lighter area: I band Darker zone: A band I band (isotropic): when light passes through this band, its velocity is the same A band (anisotropic): light does not scatter equally Z line bisects the I band and adheres to the sarcolemma, adding stability to the sarcomere Z line has alpha actin (maintains spacing of actin) and desmin (connects z lines of different myofibrils together) Position of the actin and myosin results in an overlap of the filaments in the sarcomere Center of the A band is the H zone, a lighter area due to the absence of actin filaments in this region Central part of the H zone is bisected by the M line, which delineates the sarcomere’s center M line is protein structures that support the arrangement of the myosin filaments also has myomesin which provides an anchor for titin (elastic filament Helps maintain centering between Z lines) and M-CK, provides ATP from CP