Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Reflection & Refraction At Discontinuity (change of Z0): 1-Adjustment to keep the proportionality of V and I 2-in form of initiation of 2 new waves The new waves : Reflected & Transmitted Satisfying portionality & continuity The energy conservation Auto. Satisfied α: reflection coeff. β: refraction coeff. α=(ZB-ZA)/(ZB+ZA), β=2ZB/(ZB+ZA) Energy Conservation Assuming ZA>ZB, I3=V3/ZB, I1=V1/ZA, V1+V2=V3, I2=-V2/ZA I1+I2=I3 Solving for V2,V3 : V2=[ZB-ZA]/[ZA+ZB] V1 V3=2ZB/[ZA+ZB] V1 I1V1=V1 /ZA V2 /ZA +V3 /ZB=V1 /ZA{[(ZAZB)/(ZA+ZB)] +4ZAZB/(ZA+ZB) =V1 /ZA } Traveling on multiple joint i.e. a line connected to n other lines I3B=V3B/ZB, I3C=V3C/ZC, …. I3N=V3N/ZN I2A=-V2A/ZA For Continuity of Voltage: V1A+V2A=V3B=V3C=….=V3N I1A+I2A=I3B+I3C+…+I3N These sufficient for Analysis Line Termination Open CCT voltage coeff.s :α=1, β=2 Sh. CCT Voltage coeff.s : α=-1,β=0 A real surge: V=V0(e^-αt - e^-βt) For a C termination: ZB(s)=1/C1s a=[(1/C1s)-ZA]/[1/(C1s)+ZA], b=2/C1s/[1/(C1s)+ZA] v2(s)=av1(s) Time response of C termination if α=1/(C1ZA): v2(s)=V1/s{[(1/C1s –ZA)/(1/C1s+ZA)]} V2(t)=V1(1-2e^-αt),V3(t)=V1(2-2e^-αt) Interpretation of V3 response: 1- At step application, sh. CCT. : O/P zero 2- Finally open CCT.: O/P 2V1 Similarly For a termination Inductance L1 : v2(s)=v1/s [(L1s-ZA)/(L1s+ZA)] Assuming 1/β=L1/ZA v2(s)=v1{1/(s+β)-β/[s(s+β)]}, v3=v1[2/(s+β)] Time response of L termination V2(t)=-V1(1-2e^-βt) V3(t)=2V1e^-βt Application of Thevenin theorem to: calculation of refl. & refr. at Termination Steps : to calculate current in ZB 1- branch 1st removed,& V0 across it 2-all sources sh.& replaced by int. Imp.s 3-looking to its terminals x,y ; ZA determined I=V0/(ZA+ZB),VB=IZB=V0ZB/(ZA+ZB) Attenuation and Distortion rate of Electrical energy supplied: 1/2CV ν watts, dissipated rate: GV ν both ~ V result in an exp. Form voltage wave: V0exp(-G/C t) current wave supplies: 1/2LI , dissipate I R ; both ~ I : I=I0 exp(-R/L t) However to preserve the relation of V/I=Z0 requires: R/L=G/C or R/G=L/C=Z0 =V /I says: I R=V G rate. loss. LR=rate. loss. Line Leak. In power trans. res. losses>> leakance losses Switching Operations and Transmission Lines Source Impedance Voltage on Line: V(0)/s x Z0/(Ls+Z0) V=V(0)[1-exp(- Z0t/L)] complicated source The source impedance shown When study energization of single line Closing Resistor stiff source impress 100% voltage on line closing resistor reduce percentage impressed by factor: Z0/(Z0+R) S2 close 1st , S1 short some time later Comparison of reclosing transient voltage Lattice Diagram Example of Line: Voltage: at instant t, and at point M Add incident & reflected up to that instant A general Method voltage¤t at any location vs time Example(Lattice Diagram Appl.) A sys. of O/H line & Cable O/H parameters: Zc=270Ω,T=100μs Cable parameters: Zc’=30Ω,T’=50μs Unit step, Zs=0 C open CCT VB, IB ? Refl. & Refr coefficients αA=-1 , βA=0 for B junction if O/H ~1, cable~2 αB1-2=(30-270)/300=-0.8 βB1-2=600/300=0.2 αB2-1=0.8 βB2-1=540/300=1.8 αC=1 β=2 Consider the Lattice Diagram Lattice Diagram of Example T=2T’ t=0 eB=0 t=T eB=1-.8=.2 t=2T eB=1-.8+.36=.56 t=3T eB=.56+.8-.352=1 t=4T eB=1-.36+.288+.51 =1.454 t=5T eB=1.454+.352+.285.28=1.8 Voltage Variation at B The voltage at B 1-rising continuously 2-increasing to 2 pu 3- since C open What current is expected? Any possible response? Current Refl. & Refr. coefficients αA=1 βA=0 αB12=0.8 βB12=1.8 αB21=-.8 βB21=0.2 αC=-1 βc=0 draw a similar Lattice Diagram Lattice Diagram for Current t=0 iB=0 t=T iB=(1+.8)/Zc=1.8/Zc t=2T iB=1.44/Zc t=3T iB=2.59/Zc T=4T iB=1.425/Zc T=5T iB=1.774/Zc Next the IB curve Variation of IB variation different no similarity there is some similarity in single line propagation Method capable of application in a software High memory size Characteristic Method Wave Equations: L ∂i/dt+Ri+∂e/∂x=0 (1) C ∂e/dt+Ge+∂i/∂x=0 (2) Difference of a function of 2 variables: de=∂e/∂t dt+ ∂e/∂x dx di=∂i/∂t dt + ∂i/∂x dx From these if ∂e/∂x,∂i/∂t as follows ∂e/∂x=[de-∂e/∂t dt]/dx ∂i/∂t=[di-∂i/∂x dx]/dt be substituted in EQ 1: L{ [di-∂i/∂x dx]/dt} +RI+ {[de-∂e/∂t dt]/dx}=0 (3) ∂e/∂t=- 1/C ∂i/∂x – G/C e [from (2) substituted in (3)] Reforming the Equations Ldi/dt+Ri+de/dx+G/C e dt/dx+ (-Ldx/dt+1/C dt/dx) ∂i/∂x=0 term in ()=0 to cancel the partial derivatives; then 2 resultant ODEs: Ldi/dt+Ri+de/dx+1/C Ge dt/dx=0 (dx/dt) =1/LC or in form of: LdI dx/dt+Ridx+de+1/C Ge dt/dx=0 dx/dt=+(-)1/√LC (4) (5) (6) Solution based on Characteristic Method if dx/dt=1/√LC: √L/C di+(RI+√L/C Ge)dx+de=0 (7) If dx/dt=-1/√LC: -√L/C di +(Ri-√L/C Ge)dx+de=0 (8) The characteristics are straight Lines called Forward & Backward e & i are found from above EQs Finding lossless line solution dx/dt=1/√LC=v, de=-√L/C di=-Zc di (9) dx/dt=-1/√LC=-v de=√L/C di=Zc di (10) 1st method employed by Bergeron 1928 in Hydraulic Application to single phase transmission line Integration of ODEs 7 & 8 integrating EQ set (7): e=-Zci+c1 (9), x=vt+c2 where c1 & c2 are constants: (10) found from initial conditions X=0 line terminal, if point (d, t) satisfy EQ (10) then satisfy EQ(9) and: e(d,t)=-Zc i(d,t)+c1 , d=vt+c2 (11) Similarly for point (0,t’): e(0,t’)=-Zc i(0,t’)+c1, 0=vt’+c2 (12) Subtracting EQs 11 & 12 respectively: e(d,t)-e(0,t’)=-Zc[i(d,t)-i(0,t’)], d=v(t-t’) Solution Continued t’=t-d/v=t-τ, where: τ=d/v e(d,t)-e(0,t-τ)=-Zc [i(d,t)-i(0,t-τ)] (13) and: e(0,t)-e(d,t-τ)=Zc[i(0,t)-i(d,t-τ)] (14) Rearranging (13)&(14): e(d,t)=-Zc i(d,t)+[e(0,t-τ)+Zc i(0,t-τ)] (15) e(0,t)= Zc i(0,t)+[e(d,t-τ)- Zc i(d,t-τ)] (16) Defining, 2 terms in right brackets as History dependent voltage sources; Ef(0,t-τ)=-[e(0,t-τ)+Zc i(0,t-τ)] Eb(d,t-τ)=-[e(d,t-τ)-Zc i(d,t-τ)] Lossless line Equivalent CCTs Substituting in (15)&(16) e(d,t)=-Zc i(d,t)-Ef(0,t-τ) (17) e(0,t)=Zc i(0,t)–Eb(d,t-τ) (18) Equiv. CCT. , The Norton Eq. CCT more useful Line Norton Eq. CCT. rewriting (17)&(18): i(d,t)=-1/Zc e(d,t)-If(0,t-τ) (19) i(0,t)=1/Zc e(0,t) + Ib(d,t-τ)(20) If & Ib Hist. depend. Cur. Sources: If(0,t-τ)=-1/Zc e(0,t-τ)-i(0,t-τ) Ib(d,t-τ)=-1/Zc e(d,t-τ)–i(d,t-τ) Simple H.D.S. evaluation: Ef(0,t)=-[2e(0,t)+Eb(d,t-τ)] Eb(d,t-τ)=-[2e(d,t)-Ef(0,t-τ)] Eq. CCT. Of Lumped Elements Inductance: ea-eb=L(dia,b/dt) Trapezoidal Rule: ia,b(t)-ia,b(t-∆t)= 1/L∫(ea-eb)dt= 1/L{[ea(t)-eb(t)]+ [ea(t-∆t)+ eb(t-∆t)]}/2 . ∆t ia,b(t)=∆t/2L [ea(t)eb(t)] +Ia,b(t-∆t) Ia,b(t-∆t)=ia,b(t-∆t)+ ∆t/2L[ea(t-∆t)-eb(t-∆t)] Eq. CCT for Lumped Capacitor Similar derivation: ia,b(t)=2C/∆t[ea(t)eb(t)]+Ia,b(t-∆t) Where: Ia,b(t-∆t)=-ia,b(t-∆t)-2C/∆t [ea(t-∆t)-eb(t-∆t)] all in form of: algebraic EQs Distributed Line Model in 3ph network for a 3ph lossless line in general: [-∂eph/∂x]=[L][∂iph/∂t] [-∂iph/∂x]=[C][∂eph/∂t] wave EQs similarly for 3ph is: [∂ eph/∂x ]=[L][C][∂ eph/∂t ] [∂ iph/∂x ]=[C][L][∂ iph/∂t ] [L],[C] inductance & capacitance matrices of 3 ph line with mutuals Similarity Transformation to solve the complexity of EQs instead of 3ph Domain, Modal Domain solved for 3 independent voltages Results of Modal Domain Transferred to 3ph [eph]=[M][eM] and [iph]=[N][iM] [∂ eM/∂x ]= [M][L][C][M][∂ eM/∂t ]=[Λ][∂ eM/∂t ] [∂ iM/∂x ]= [N][L][C][N][∂ iM/∂t ]=[Λ][∂ iM/∂t ] Similarity Transformation [Λ] is diagonal matrix Diagonal elements are eigen values of: [L][C] or [C][L] EQ of λn is independent of other modes: ∂ eM/∂x ∂ eM/∂t 1 1 1 1 -2 1 1 1 -2 =λn λn≈LC of single phase A case where: [M]=[N] is shown Vn=√1/λn,τn=l/vn Bergeron EQs for 3ph network Eq. Modal Domains of 3ph. i1a-2a(t)= -1/Za e1a(t)-Ifa(t-τa) i1b-2b(t)= -1/Zb e1b(t)-Ifb(t-τb) i1c-2c(t)= -1/Zc e1c(t)-Ifc(t-τc) The 3ph Eq CCT Equations In matrix form: [iM(1-2)]=-[Λ / ]- [eM1]-[IMf(t-τ)] [IMf(t-τ)]=-{[Λ / ][eM2(t-τ)]-[iM(2-1)(tτ)]} Then : [N]- [i1-2(t)]=[Λ / ][M][e1(t)]+[IMf(t-τ)] Or: [i1-2(t)]=[G][e1(t)] + [I] 1st Mid Term Exam Question 1: Xc1=20 /20=20Ω, Xc2=40Ω C1=1/(3.14x20)=1 59.1μF,C2=79.6μF Vp=20√2/√3 Ceq=C1C2/[C1+C2] Z0=√[(40x238.68) /12661]=0.868Ω Q1 continued d I/dt +1/τs dI/dt +I/T =0 i(s)=(s+1/Ts)/[s +s/Ts+1/T ]I(0)+I’(0)/[ s +s/Ts+1/T ] I(0)=0, I’(0)=Vc(0)/L i(s)=Vc(0)/L x 1/[s +s/Ts+1/T ] i(s)=Vc(0)/L x 1/[s +1/T ] undamped I(t)=Vc(0)/Z0 sinω0t Ip=Vp/0.868=18.81 KA Ip%=13.5/18.81=0.715fig4.4:λ=2.0 λ=Z0/R=0.868/R=2 R=0.434 Ω Q1 solution Vcf=Vpx159.1/[159.1+79.6]=10.88KV in undamp, C2swing to 21.76 KV with damping: C1V1=C1V1(0)-C2V2 V1=V1(0)-C2/C1V2 V1=IR+L dI/dt +V2, I=C2dV2/dt d V2/dt +L/R dV2/dt+V2/LC=V1(0)/LC2 V2(0)=V’2(0)=0 V2(s)=V1(0)/T 1/[s(s +s/Ts+1/T )] xC1/[C1+C2] 2x15/21.76=1.38fig 4.7: λ=1.8, R=Z0/λ R=Z0/λ=0.868/1.8=0.482Ω Question 2 30/[20√3]=0.866 KA I XL /[20/√3]=0.12 XL=0.12x20/√3/0.86 8=1.6 Ω L=1.6/314.15=5.1 mH R=0.05x20√3/0.868 =0.666Ω Q2 continued Z=√0.666 +1.6 =1.73Ω Φ=tan- 1.6/0.666=tan- 2.4=67.38◦ Z0=√0.0051/(1.2x10^-8)=651.92Ω λ=651.92/0.666=978.8 TRV :Almost undamped:2Vp=2x16.33=32.66 KV t=Π√LC=3.1415√0.0051x1.2x10^8=24.47 μs k=20/32.66=0.6125 fig 4.7:η=1.2 Q2 continued R/651.9=1.2 R=782.3Ω RRRV=32.65/24.57=1.327 KV/μs t’=3.6 t=3.6x 7.82=28.15μs RRRV=20/28.15=0.71 KV/μs