Download Ideal Transformer

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Transformer
Professor Mohamed A. El-Sharkawi
Why do we need transformers?
• Increase voltage of generator output
– Transmit power and low current
– Reduce cost of transmission system
•
•
•
•
Adjust voltage to a usable level
Create electrical isolation
Match load impedance
Filters
2
Basic Components
Iron Core
Insulated Copper Wire
3
4
5
d
e1  N1
dt
1

e1 dt

N1
d
e2  N 2
dt
i1
i2
+
+
e1
_
Primary
N1
N2
e2
_
Secondary
6
Basic Analysis:Voltage
d
N1
e1 t 
N1
dt


e2 t  N d N 2
2
dt

E1 N1
 
E2 N 2
i2
i1
e1 _+
N1
N2
+
_
e2


E1 E2

N1 N 2
• Volts/turn is constant
• Voltages are in phase (no phase shift)
• Magnitudes vary with turns ratio.
7
Basic Analysis: Power and current
S1  S2
EI E I
*
1 1
*
1
*
2
i2
i1
*
2 2
I
E2 N 2


I
E1 N1
e1 _+
I1 N 2

I 2 N1
N1
N2
+
_
e2
N1I1  N 2 I 2
• Currents are in phase.
• Current ratio is opposite to the voltage ratio
8
Basic Analysis: Reflected impedance
I1
+
E1
I1
I2
+
+
N
1
N
2
-
E2
-
Z 2 I 2  E2
Z1I1  E1
Z2
E1
Z1
-
Z 2 E 2 I1 N 2 N 2  N 2 



 
Z1 E1 I 2 N1 N1  N1 
Z2  N2 

 
Z1  N1 
2
9
2
Ideal Transformer: Ratings
I1
Apparent Power
100 MVA, 13.8/138 KV
Primary Voltage
+
V1
-
N1
I2
N2
+
V2
-
Secondary Voltage
10
Ideal Transformer: Ratings
I1
100 MVA, 138/13.8 KV
S  V1I1  V2 I 2  100 MVA
V1 N1 138 kV


 10
V2 N 2 13.8 kV
+
V1
-
N1
I2
N2
+
V2
-
S
100 MVA
I2 

 7250 A
V2
13.8 kV
S
100 MVA
I1  
 725 A
V1
138 kV
11
Actual Transformer
• Windings:
– Resistance
– Inductance
i2
i1
e1 _+
N1
N2
+
_
e2
• Core:
– Eddy Current
– Hysteresis
12
Windings Impedance
R1
X1
N1
R2
X2
N2
Ideal Transformer
13
Core Hysteresis
i
B
+
e
_
N
H
B f
 e dt 
H  f i 
14
e
i
15
i
Core Model
Let
e  Emax sin t
 e dt  
Emax

e
R
e
cos t
e Emax
i 
sin t
R
R
i
16
i
Core Model
Let
e  Emax sin t
 e dt  
Emax

e
cos t
di
eL
dt
Emax
1
i   e dt  
cos t
L
L
Xl
e
i
17
i
e
R
Xl
e
e
i
i
18
Equivalent Circuit
X1
R1
V1
I
'
2
N1 N2
R2
Io
I1
Ro
Xo
E1
N1 V1


E2
N 2 V2
E1
E2
X2
I2
'
I 2 N2
I1


I2
N1 I 2
19
V2