Download Alternating Current

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Alternating Current
Voltage Source : v(t) = V cos t
Current Source : i(t) = I cos t
Phasors: a graphical method for (combinations) of
trigonometric functions

I
t
i(t)=I cos t
p212c32: 1
Full Wave Rectifier
G
Irav = (2/ I
i
t
p212c32: 2
RMS values
i2(t)
Root-Mean-Square:
I rms  ((i (t )) 2 ) average
i (t )  I cos t
i(t)
i 2 (t )  I 2 cos 2 t
1
 I 2 ( (1  cos2t ))
2
2
1
I
average(i 2 (t ))  I 2 ( (1  0)) 
2
2
I
I rms 
2
V
Vrms 
2
Household Power
120V = Vrms
V  2Vrms  2120V
 170V
p212c32: 3
i  I cos  t
v  iR

 IR cos  t
 V cos  t
V  IR
v(t)=
Vcos(t)
I

R

Current is in phase with Voltage
V=I
t
R
i(t)=I cos t
v(t)=V cos t
p212c32: 4
v  EMF  0  v  ( L
di
)
dt
I cos  t
di
v  L  LI sin  t
dt
 LI cos( t  90)
 V cos( t  90)
V  LI  IX L

i(t)=
Icos(t)
L
X L  Inductive Reactance
V=IXL


I
t
Current lags Voltage
Voltage leads Current
v(t)=V cos (t+90°)
i(t)=I cos t
p212c32: 5
vq C
i  I cos 
dq
i
dt
I
q  sin 

t

i(t)=
Icos(t)

q
q
C
I
t
I
v
sin  t
C
I

cos( t  90)
C
 V cos( t  90)
I
V
 IX C
C
X C  Capacitive Reactance

t
V=IXL
i(t)=I cos t
v(t)=V cos t
Current leads Voltage
Voltage lags Current
p212c32: 6
Element
Resistor
Inductor
Amplitude
V = IR
V  IX L
Capacitor
V  IX C
XC
Reactance Phase
R
in phase
X L  L v leads i
1
XC 
i leads v
C
XL
R

p212c32: 7
L-R-C Circuit
i = I cos(t)
i(t)=Icos(t)
v(t)=Vcos(t+)
= IXLcos(t+)
+ IRcos(t)
+ IXCcos(t)
L
vL(t)=IXLcos(t+)
R
vR(t)=IRcos(t)
C
vC(t)=IXCcos(t)
p212c32: 8
v(t)=Vcos(t+)
= IXLcos(t+)
+ IRcos(t)
+ IXCcos(t)
Z2 = R2+ X2
= R2+ (XLXC)2
tan() = X/R
VL=IXL VC=IXC
VL- VC =IX
I
V=I

Z
VR=IR
VL=IXL
V=I
Z 
VC=IXC
VL- VC =IX
VR=IR
I
p212c32: 9
V  IZ
Z  R2  X 2
 R 2  ( X L  X C )2
 R 2  (L  1 C ) 2
X
tan  
R
X L  X C L  1 C


R
R
v  V cos(t   )
voltage leads (lags) current if
X L  XC ( X L  XC )
p212c32: 10
LRC series circuit example
R  300 C .5F
V  50V
L  60mH f  1591 Hz

XL 
XC 
X 

Z
I
VR 
VC 
VC 
p212c32: 11
Power
Instantane ous Power :
p  iv  I cos(t )V cos(t   )
1

1
 IV  cos( )  cos( 2t   ) 
2

2
Average Power :
1
P  IV cos( )  I rmsVrms cos( )
2
cos( ) " Power factor"
=R Z
p212c32: 12
Series Resonance
Z
XL
XC
X
R
log()
Z
phi
I
I = V/Z
log()
p212c32: 13
I
o
1
o 
LC
Width of resonance :    I  I o

2
o
Quality factor Q 

o L

R
HW: add Q,  calculations to all rlc series HW problems
p212c32: 14
LRC series circuit example (more)
R  300
C  .5F
L  60mH
f  1591 Hz   cos( 53)
Z  500
I  .1A
V  50V
P
o 
fo =
Q
 
p212c32: 15
LRC series circuit example (and more)
R  160 C  .1F
L  .6 H
o 
fo =
Q
 
p212c32: 16
Parallel L-R-C Circuit
iL(t)=
ILcos(t-90° )
L
iR(t)=
IRcos(t)
R
iC(t)=
ICcos(t )
C
v(t)=
Vcos(t)
i = I cos(t+)
= IL cos(t-90° )
+ IR cos(t)
+ IC cos(t)
= V/XLcos(t-90° )
+ V/R cos(t)
+ V/XC cos(t)
p212c32: 17
IL
i = I cos(t+)
= IL cos(t-90° )
+ IR cos(t)
+ IC cos(t)
I2 = IR2+ (ICIL)2
tan() = (ICIL)/IR
IC
I C- I L
V
I=V/Z

IR
IC
IL
I=V/Z

IR
I C- I L
V
p212c32: 18
I 1

V Z
1
2
2
 (1 R)  (1 X C  1 X L )
Z
 (1 R)  (C  1 L)
2
2
IC  I L
tan  
 R(C  1 L)
IR
i  I cos(t   )
current leads (lags) voltage if
X L  XC ( X L  XC )
p212c32: 19
LRC parallel circuit example
R  300 C .5F
V  50V
L  60mH f  1591 Hz

XL 
XC 

Z
I
IR 
IL 
IC 
P
p212c32: 20
Parallel “Resonance”
Z
XL
XC
R
log()
Z
I
log()
phi
p212c32: 21
V
I
Z
V
  VC
R

o 
1
LC
p212c32: 22
Transformers:
Ferromagnetic Materials Strengthen Flux
 B1   B 2
all field lines go through both areas
d B1
V1   N1
dt
d B 2
V2   N 2
dt
V1 N1

V2 N 2
N1
V1, I1
Primary
B
N2
V2, I2
Secondary
p212c32: 23
Transformers
V1 N1

V2 N 2
P1  P2
conservati on of energy
I1V1  I 2V2
B
N1
V1, I1
Primary
N2
V2, I2
Secondary
(rms values)
V1 N1 I 2


V2 N 2 I1
N2 >N1 => V2 > V1 Step-Up Transformer
N2 <N1 => V2 < V1 Step-Down Transformer
p212c32: 24
A coffee maker from Europe is designed to operate on a 240-V line (rms) to obtain
960W of power.
(a) Determine what characteristics are needed by a transformer so that the proper
delivery voltage be obtained from the US standard voltage of 120 V (rms)?
(b) What current is drawn at the secondary?
(c) What is the resistance of the coffee maker?
(d) What current is drawn from the 120 V outlet by the primary?
(e) What is the power delivered by the 120 V source?
p212c32: 25