Download Chapter 4

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Transistor–transistor logic wikipedia , lookup

Radio transmitter design wikipedia , lookup

Test probe wikipedia , lookup

Spark-gap transmitter wikipedia , lookup

Index of electronics articles wikipedia , lookup

Regenerative circuit wikipedia , lookup

Integrating ADC wikipedia , lookup

Josephson voltage standard wikipedia , lookup

CMOS wikipedia , lookup

Multimeter wikipedia , lookup

Wilson current mirror wikipedia , lookup

Schmitt trigger wikipedia , lookup

Valve RF amplifier wikipedia , lookup

TRIAC wikipedia , lookup

Operational amplifier wikipedia , lookup

Electrical ballast wikipedia , lookup

Voltage regulator wikipedia , lookup

Power electronics wikipedia , lookup

Ohm's law wikipedia , lookup

Power MOSFET wikipedia , lookup

RLC circuit wikipedia , lookup

Surge protector wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Opto-isolator wikipedia , lookup

Current source wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Network analysis (electrical circuits) wikipedia , lookup

Current mirror wikipedia , lookup

Rectiverter wikipedia , lookup

Transcript
Chapter 4
Alternating Current Circuits
10-12-2014
FCI- F. Univ.
1
Chapter 4:
4-1 AC Sources
4.2 Resistors in an AC
Circuit
4.3 Inductors in an AC
Circuit
4.4 Capacitors in an
AC Circuit
4.5 The RLC Series
Circuit
10-12-2014
4.6 Power in an AC
Circuit
4.7 Resonance in a
Series RLC Circuit
4.8 The Transformer and
Power Transmission
4.9 Rectifiers and Filters
FCI- F. Univ.
2
Objecties: The students should be able to:

Describe the sinusoidal variation in ac current and
voltage, and calculate their effective values.

Write and apply equations for calculating the
inductive and capacitive reactance for inductors
and capacitors in an ac circuit.

Describe, with diagrams and equations, the phase
relationships for circuits containing resistance,
capacitance, and inductance.
10-12-2014
FCI- F. Univ.
3

Write and apply equations for calculating the
impedance, the phase angle, the effective
current, the average power, and the resonant
frequency for a series ac circuit.

Describe the basic operation of a step up and a
step-down transformer.

Write and apply the transformer equation and
determine the efficiency of a transformer.
10-12-2014
FCI- F. Univ.
4
4-1 AC Circuits



An AC circuit consists of a combination of
circuit elements and a power source
The power source provides an alternative
voltage, Dv
Notation Note


10-12-2014
Lower case symbols will indicate instantaneous
values
Capital letters will indicate fixed values
FCI- F. Univ.
5
- AC Voltage

The output of an AC power source is
sinusoidal and varies with time according to
the following equation:

Δv = ΔVmax sin ωt

Δv is the instantaneous voltage

ΔVmax is the maximum output voltage of the source


10-12-2014
Also called the voltage amplitude
ω is the angular frequency of the AC voltage
FCI- F. Univ.
6
- AC Voltage, cont.

The angular frequency is
2π
ω  2π ƒ 
T



ƒ is the frequency of the
source
T is the period of the source
The voltage is positive
during one half of the cycle
and negative during the
other half
10-12-2014
FCI- F. Univ.
7
- AC Voltage, final


The current in any circuit driven by an AC
source is an alternating current that varies
sinusoidally with time
Commercial electric power plants in the US
use a frequency of 60 Hz

10-12-2014
This corresponds with an angular frequency
of 377 rad/s
FCI- F. Univ.
8
4-2 Resistors in an AC Circuit

Consider a circuit
consisting of an AC
source and a resistor

The AC source is
symbolized by

ΔvR = Vmax sin wt

ΔvR is the instantaneous
voltage across the resistor
10-12-2014
FCI- F. Univ.
9
Resistors in an AC Circuit, 2

The instantaneous current in the resistor is
DvR DVmax
iR 

sin ωt  I max sin ωt
R
R

The instantaneous voltage across the resistor
is also given as
ΔvR = Imax R sin ωt
10-12-2014
FCI- F. Univ.
10
Resistors in an AC Circuit, 3



The graph shows the
current through and the
voltage across the
resistor
The current and the
voltage reach their
maximum values at the
same time
The current and the
voltage are said to be
in phase
10-12-2014
FCI- F. Univ.
11
Resistors in an AC Circuit, 4

For a sinusoidal applied voltage, the current
in a resistor is always in phase with the
voltage across the resistor

The direction of the current has no effect on
the behavior of the resistor

Resistors behave essentially the same
way in both DC and AC circuits
10-12-2014
FCI- F. Univ.
12
Phasor Diagram


To simplify the analysis
of AC circuits, a
graphical constructor
called a phasor diagram
can be used
A phasor is a vector
whose length is
proportional to the
maximum value of the
variable it represents
10-12-2014
FCI- F. Univ.
13
Phasors, cont.

The vector rotates counterclockwise at an
angular speed equal to the angular frequency
associated with the variable

The projection of the phasor onto the
vertical axis represents the instantaneous
value of the quantity it represents
10-12-2014
FCI- F. Univ.
14
rms Current and Voltage


The average current in one cycle is zero
The rms current is the average of importance
in an AC circuit

rms stands for root mean square
Irms

Imax

 0.707 Imax
2
Alternating voltages can also be discussed
in terms of rms values
10-12-2014
DVrms
DVmax

 0707
.
DVmax
2
FCI- F. Univ.
15
Power

The rate at which electrical energy is
dissipated in the circuit is given by

10-12-2014
P=i2R

i is the instantaneous current

The heating effect produced by an AC current with a
maximum value of Imax is not the same as that of a
DC current of the same value

The maximum current occurs for a small amount of
time
FCI- F. Univ.
16
Power, cont.

The average power delivered to a resistor
that carries an alternating current is
Pav  I
10-12-2014
2
rms
R
FCI- F. Univ.
17
Notes About rms Values
rms values are used when discussing
alternating currents and voltages because:

AC ammeters and voltmeters are designed to
read rms values

Many of the equations that will be used have
the same form as their DC counterparts
10-12-2014
FCI- F. Univ.
18
Example 1:

Solution:
Comparing this expression
 The voltage output of an AC
for voltage output with the
source is given by the
general form
expression
∆v = ∆ Vmax sinωt, we see
∆v = (200 V) sin ωt.
that
∆ Vmax = 200 V. Thus, the
Find the rms current in the
rms voltage is
circuit
when this source is connected
to a 100 Ohm resistor.
10-12-2014
FCI- F. Univ.
19
4-3 Inductors in an AC Circuit

Kirchhoff’s loop rule
can be applied and
gives:
Dv  Dv L  0 , or
di
Dv  L
0
dt
di
Dv  L
 DVmax sin ωt
dt
10-12-2014
FCI- F. Univ.
20
Current in an Inductor

The equation obtained from Kirchhoff's loop rule can
be solved for the current
DVmax
DVmax
iL 
sin ωt dt  
cos ωt

L
ωL
DVmax
π
DVmax

iL 
sin  ωt  
I max 
ωL
2
ωL


This shows that the instantaneous current iL in the
inductor and the instantaneous voltage ΔvL across
the inductor are out of phase by (p/2) rad = 90o
10-12-2014
FCI- F. Univ.
21
Phase Relationship of
Inductors in an AC Circuit

The current is a maximum
when the voltage across the
inductor is zero


The current is momentarily
not changing
For a sinusoidal applied
voltage, the current in an
inductor always lags
behind the voltage across
the inductor by 90° (π/2)
10-12-2014
FCI- F. Univ.
22
Phasor Diagram for an
Inductor



The phasors are at 90o
with respect to each
other
This represents the
phase difference
between the current
and voltage
Specifically, the
current lags behind
the voltage by 90o
10-12-2014
FCI- F. Univ.
23
Inductive Reactance



The factor ωL has the same units as
resistance and is related to current and
voltage in the same way as resistance
Because ωL depends on the frequency, it
reacts differently, in terms of offering
resistance to current, for different frequencies
The factor is the inductive reactance and is
given by:
XL = ωL
10-12-2014
FCI- F. Univ.
24
Inductive Reactance, cont.

Current can be expressed in terms of the
inductive reactance
Imax

DVmax
DVrms

or Irms 
XL
XL
As the frequency increases, the inductive
reactance increases

This is consistent with Faraday’s Law:

10-12-2014
The larger the rate of change of the current in the
inductor, the larger the back emf, giving an increase in
the reactance and a decrease in the current
FCI- F. Univ.
25
Voltage Across the Inductor

The instantaneous voltage across the
inductor is
di
Dv L  L
dt
 DVmax sin ωt
  Imax X L sin ωt
10-12-2014
FCI- F. Univ.
26
Example 33.2 A Purely Inductive AC
Circuit
In a purely inductive AC circuit, L = 25.0 mH and
the rms voltage is 150 V. Calculate the
inductive reactance and rms current in the circuit
if the frequency is 60.0 Hz.
10-12-2014
FCI- F. Univ.
27
10-12-2014
FCI- F. Univ.
28
4-4 Capacitors in an AC Circuit

The circuit contains a
capacitor and an AC source

Kirchhoff’s loop rule gives:
Δv + Δvc = 0 and so
Δv = ΔvC = ΔVmax sin ωt

10-12-2014
Δvc is the instantaneous
voltage across the
capacitor
FCI- F. Univ.
29
Capacitors in an AC Circuit, cont.


The charge is q = CΔVmax sin ωt
The instantaneous current is given by
dq
iC 
 ωC DVmax cos ωt
dt
π

or iC  ωC DVmax sin  ωt  
2

The current is p/2 rad = 90o out of phase
with the voltage
10-12-2014
FCI- F. Univ.
30
More About Capacitors in an AC
Circuit

The current reaches its
maximum value one
quarter of a cycle sooner
than the voltage reaches
its maximum value

The current leads the
voltage by 90o
10-12-2014
FCI- F. Univ.
31
Phasor Diagram for Capacitor

The phasor diagram
shows that for a
sinusoidally applied
voltage, the current
always leads the
voltage across a
capacitor by 90o
10-12-2014
FCI- F. Univ.
32
Capacitive Reactance

The maximum current in the circuit occurs at
cos ωt = 1 which gives
Imax  ωCDVmax

DVmax

(1 / ωC )
The impeding effect of a capacitor on the
current in an AC circuit is called the
capacitive reactance and is given by
1
XC 
ωC
10-12-2014
which gives
FCI- F. Univ.
Imax
DVmax

XC
33
Voltage Across a Capacitor

The instantaneous voltage across the capacitor can
be written as ΔvC = ΔVmax sin ωt = Imax XC sin ωt

As the frequency of the voltage source increases,
the capacitive reactance decreases and the
maximum current increases

As the frequency approaches zero, XC approaches
infinity and the current approaches zero

10-12-2014
This would act like a DC voltage and the capacitor
would act as an open circuit
FCI- F. Univ.
34
Example.3 A Purely Capacitive AC
Circuit
ω=2 πf =377 s-1
10-12-2014
FCI- F. Univ.
35