Download Simple Resistor Circuits

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
CP2 Circuit Theory
Dr Todd Huffman [email protected]
http://www-pnp.physics.ox.ac.uk/~huffman/
Aims of this course:
Understand basic circuit components (resistors, capacitors,
inductors, voltage and current sources, op-amps)
Analyse and design simple linear circuits
–
+
+
+
Circuit Theory: Synopsis
Basics: voltage, current, Ohm’s law…
Kirchoff’s laws: mesh currents, node voltages…
Thevenin and Norton’s theorem: ideal voltage and
current sources…
Capacitors:
Stored energy, RC and RL transient
circuits
Inductors:
AC theory: complex notation, phasor diagrams, RC,
RL, LCR circuits, resonance, bridges…
Op amps: ideal operational amplifier circuits…
Op-amps are now on the exam syllabus
Reading List
• Electronics: Circuits, Amplifiers and Gates, D V Bugg, Taylor
and Francis
Chapters 1-7
• Basic Electronics for Scientists and Engineers, D L Eggleston,
CUP
Chapters 1,2,6
• Electromagnetism Principles and Applications, Lorrain and
Corson, Freeman
Chapters 5,16,17,18
• Practical Course Electronics Manual
http://www-teaching.physics.ox.ac.uk/practical_course/ElManToc.html
Chapters 1-3
• Elementary Linear Circuit Analysis, L S Bobrow, HRW
Chapters 1-6
• The Art of Electronics, Horowitz and Hill, CUP
Why study circuit theory?
• Foundations of electronics: analogue circuits,
digital circuits, computing, communications…
• Scientific instruments: readout, measurement,
data acquisition…
• Physics of electrical circuits, electromagnetism,
transmission lines, particle accelerators,
thunderstorms…
• Not just electrical systems, also thermal,
pneumatic, hydraulic circuits, control theory
Mathematics required
• Differential equations
• Complex numbers
• Linear equations
d2I R dI
1


I0
2
L dt LC
dt
V(t)=V0ejωt
V
I
Z
Z  R  jX
V0–I1R1–(I1–I2)R3 = 0
(I1–I2)R3–I2R2+2 = 0
Covered by Complex Nos & ODEs / Vectors & Matrices lectures
Charge, voltage, current
Charge: determines strength of electromagnetic force
quantised: e=1.62×10-19C
[coulombs]
[volts]
Potential difference: V=VA–VB
Energy to move unit charge from A to B
in electric field
B
V   E  ds
A
B
W   QE  ds
A
E  V
Charge Q=e
Current: rate of flow of charge
dQ
I
 nAve
dt
No. electrons/unit vol
Cross-section area
of conductor
Drift
velocity
[amps]
Power: rate of change of work
dW
d
dV
dQ
QV  Q  V
P

dt
dt
dt
dt
 IV
[watts]
Ohm’s law
Voltage difference  current
Resistor symbols:
L
I
R
A
V
V  IR
R=Resistance Ω[ohms]
L
R 
A
ρ=Resistivity Ωm
Resistivities
Silver
1.6×10-8 Ωm
Copper
1.7×10-8 Ωm
Manganin
42×10-8 Ωm
Distilled water
5.0×103 Ωm
PTFE
~1019 Ωm
Conductance
[seimens]
1
g
R
conductivity
[seimens/m]
1


2
V
Power dissipation by resistor: P  IV  I2R 
R
Voltage source
V0
+
–
V0
battery cell
Rload
Ideal voltage source: supplies V0
independent of current
Real voltage source:
Rint
Rload
Vload=V0–IRint
Constant current source
I0
Rload
Ideal current source: supplies I0 amps
independent of voltage
Symbol:
or
Real current source:
I0
Rint
Rload
I load
V
 I0 
Rint
AC and DC
DC (Direct Current):
Time independent
+
–
V=V0
AC (Alternating Current):
+
-
Constant voltage or current
Time dependent
Periodic
I(t)=I0sin(ωt)
2
  2f 
T
50Hz power, audio, radio…
RMS values
AC Power dissipation
VRM S 
Why
2?
P  IRM SVRM S
V0
2
VRM
S

R
2
Square root of mean of V(t)2
VRMS 
1
T

T
0
V t dt
2
Passive Sign Convention
Passive devices ONLY - Learn it; Live it; Love it!
R=Resistance Ω[ohms]
V  IR
Two seemingly Simple questions:
Which way does the current flow, left or right?
Voltage has a ‘+’ side and a ‘-’ side (you can see it on a battery)
on which side should we put the ‘+’? On the left or the right?
Given V=IR, does it matter which sides for V or which
direction for I?
Kirchoff’s Laws
I Kirchoff’s current law:
I1
I2
I3
Sum of all currents at a
node is zero
I1+I2–I3–I4=0
I
n
I4
0
(conservation of charge)
Here is a cute trick:
It does not matter whether you pick “entering”
or “leaving” currents as positive.
BUT keep the same convention
for all currents on one node!
II Kirchoff’s voltage law: Around a closed loop the net
change of potential is zero
(Conservation of Energy)
R1
I
1kΩ
V0
5V
3kΩ
R2
V
n
0
4kΩ
R3
Calculate the voltage
across R2
Kirchoff’s voltage law:
V
n
0
-V0+IR1+IR2+IR3=0
+IR1
+
–V0
–
1kW
I
+
–
5V=I(1+3+4)kΩ
V0
+
3kW
–
4kW
+
–
+IR1
5V
I
 0.625mA
8000W
+IR2
VR2=0.625mA×3kΩ=1.9V
Series / parallel circuits
R1
R2
R3
RT 
Resistors in series: RTotal=R1+R2+R3…
Resistors in parallel
R1
R2
R3
1

RT
1
n R
n
1
1
1




R1 R 2 R 3
Two parallel
resistors:
R1R 2
RT 
R1  R 2
R
n
n
Potential divider
R1
V0
R2
V0R 2
R1  R 2
USE PASSIVE SIGN CONVENTION!!!
Show on blackboard
Mesh currents
I1
+
+
9V
+
+
I1
R2
I3
R3
I2
I2
+
R1
R1=3kΩ
R2=2kΩ
R3=6kΩ
2V
First job: Label loop currents in all interior loops
Second job: USE PASSIVE SIGN CONVENTION!!!
Third job: Apply KCL to elements that share loop currents
Define: Currents Entering Node are positive
I1–I2–I3 = 0  I3 = I1-I2
Mesh currents
Fourth job:
I1
+
+
9V
+
+
I1
R2
I3
R3
I2
I2
+
R1
R1=3kΩ
R2=2kΩ
R3=6kΩ
2V
Apply Kirchoff’s Voltage law around each loop.
Last job: USE Ohm’s law and solve equations.
Mesh currents
R1
-9V+I1R1+I3R3 = 0
–I3R3+I2R2+2V = 0
9V/kΩ = 9I1–6I2
-2V/kΩ = -6I1+8I2
 I2=1 mA
R2
I3
I2
R3
I2
+
I1
+
+
9V
+
+
I1
R1=3kΩ
R2=2kΩ
R3=6kΩ
2V
I3 =I1–I2
Solve simultaneous
equations
I1  5 mA
I 3  2 mA
3
3
V3  R3 I 3  4 V
Node voltages
R1
I1
9V
VX
+
+
R1=3kΩ
R2=2kΩ
R3=6kΩ
R2
I3
I2
R3
-
+
2V
-
0V
Step 1: Choose a ground node!
Step 2: Label voltages on all unlabled nodes
Step 3: Apply KCL and ohms law using the tricks
Node voltages
R1
VX
+
I1
+
9V
R2
I3
I2
-
R3
-
R1=3kΩ
R2=2kΩ
R3=6kΩ
+
2V
-
0V
0 
0
I 2  I 3  I1
VX  (2V ) VX VX  9V


R2
R3
R1
All currents leave all labeled nodes
And apply DV/R to each current.
Only one equation,
Mesh analysis would give two.
USE PASSIVE SIGN CONVENTION!!!
0 
R1
I 2  I 3  I1
I1
VX  (2V ) VX VX  9V
0


R2
R3
R1
9V
+
VX
R2
I3
R3
0V
 1
1
1  9V 2V
 
VX 



 3mA  1mA  2mA
 R 2 R 3 R1  R1 R 2
1 1 1 1
VX    
 2mA
 2 6 3  kW
VX
 2mA
1kW

VX  2V
9V  2V 7
 mA
3kW
3
2V
1
I3 
 mA
6kW 3
I1 
I2 
2V  2V
 2mA
2kW
I2
+
2V
Thevenin’s theorem
Any linear network
of voltage/current
sources and
resistors

Veq
Req
Equivalent circuit
In Practice, to find Veq, Req…
RL (open circuit)
RL0 (short circuit)
IL0
Veq=VOS
VL0
VOS
Req 
I SS
Req = resistance between terminals when all voltages
sources shorted – Warning! This is not always obvious!
R2
Vos  V0
R1  R2
I1
V0
+
R1
I2
R2
Iss
RL
VL
R eq
V0
I ss 
R1
R2
V0
R1R 2
R1  R 2


V0
R1R 2
R1
Norton’s theorem
Any linear network
of voltage/current
sources and
resistors

I0
Equivalent circuit
Req
R1
V0
Ieq
Rload
 Ieq
Req
Rload
VL
 IR  IL 
 IL
R eq
VL=V0–ILR1
Ieq
V0

R eq
R eqIeq  R eqIL  VL
R eq  R1
V0
R

V0
R
R
A
R1=3kΩ
9V
+
R2=2kΩ
R3=
6kΩ
+
1kΩ
2V
A
2V +
B
B
using Thevenin’s theorem:
from Prev. Already know VAB =Veq= 2V
A
I1
9V
+
R1  3kW
R2=2kΩ
2V
Iss
+
I2
I1 
9V
 3ma
3kW
I SS
B
2V
 1ma
2kW
 I1  I 2  2ma
I2 
Req 
Veq
I SS
 1kW
A
R1=3kΩ
9V
R2=2kΩ
+
R3=
6kΩ
+
A
2V
2mA
1kΩ
B
B
using Norton’s theorem:
Same procedure: Find ISS and VOC
IEQ = ISS and REQ = VOC/ISS
Superposition
R1
+
9V
I1
R1
+
9V
IA
I1=IA+IE
R2
I3
I2
R3
+
=
IC
R3
2V
Important: label
Everything the same
directions!
R2
R1
IB
+
I2=IB+IF
IE
R2
IG
R3
I3=IC+IG
IF
+
2V
R2
R1
+
9V
IA
IC
IB
R3
Example:
Superposition
R1=3kΩ
R2=2kΩ
R3=6kΩ
IA
9V
+
R 2R 3
R1 
R2  R3
R1
IC
IB
R3
R2
9V
IA 
 2mA
4.5kW
R 2R 3
 1.5kW
R2  R3
ICR 3  IBR 2  9V
IC  0.5mA
 4.5kW
1.5
 3V
4.5
IB  1.5mA
R1
IE
IG
IF
R3
2V
+
R1=3kΩ
R2=2kΩ
R3=6kΩ
R2
2V
+
IG
IE
R3
R1
R1R 3
 2kW
R1  R 3
IF
R1R 3
R1  R 3
 4kW
R2
2V
IF 
 0.5mA
4kW
R2 
 IGR 3  IER 1  2V
1
IG   mA
6
2
 1V
4
1
IE  mA
3
R1
+
9V
I1
R1
+
9V
R2
I3
I2
R3
+
=
IA
IC
R3
2V
R2
R1
IB
+
IE
R2
IG
R3
IF
+
I1=IA+IE
I2=IB+IF
I3=IC+IG
1

I1   2  mA
3

7
 mA
3
I2  1.5  0.5mA
1

I3   0.5  mA
6

1
 mA
3
 2mA
2V
Matching: maximum power
transfer
Find R to give maximum
L
power in load
V0
Rin
Rload
2
VL2
R
1
2
L
P
 V0
2
RL
R in  R L  R L
dP
2 R in  R L   2R L R in  R L 
 V0
0
4
dR L
Rin  RL 
2
R in  R L  2R L  0
 Rin  RL
Maximum power transfer when RL=Rin
Note – power dissipated half in RL and half in Rin
Circuits have Consequences
• Problem:
– My old speakers are 60W
speakers.
– Special 2-4-1 deal at ElCheap-0 Acoustics on 120W
speakers!!
• (“Offer not seen on TV!”)
– Do I buy them?
• Depends! 4W, 8W, or 16W
speakers?
• Why does this matter?
And Now for Something Completely Different