* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PBHS AP Biology Lab 2
Inositol-trisphosphate 3-kinase wikipedia , lookup
Nicotinamide adenine dinucleotide wikipedia , lookup
Restriction enzyme wikipedia , lookup
Alcohol dehydrogenase wikipedia , lookup
Beta-lactamase wikipedia , lookup
Transferase wikipedia , lookup
Lactoylglutathione lyase wikipedia , lookup
PBHS AP Biology STEVENSON 2009-10 Lab #2: Enzyme Catalysis Introduction: This the first of 12 AP Labs designed to illustrate the themes of this class. These labs are very important as the AP Test will have least one essay question and several multiple choice questions based on these labs. Lab #2: Enzyme Catalysis Introduction Enzymes are proteins produced by living cells that act as catalysts in biochemical reactions Substance to be acted on is called the substrate (S) The substrate binds reversibly to the active site of the enzyme (E) Reduces the energy required to activate the reaction so that products (P) can be formed E + S ES E + P Lab #2: Enzyme Catalysis Introduction The enzyme is not changed in any way and so can be recycled to break additional substrate molecules The active site is the portion of the enzyme that reacts with the substrate Any substance that blocks or changes the active site can affect the activity of the enzyme Lab #2: Enzyme Catalysis Salt concentration If the salt concentration is very low, the enzyme will denature and form an inactive precipitate If the salt concentration is very high, new interactions will occur and again an inactive precipitate is formed Intermediate salt concentrations such as human blood (0.9%) is the optimum for many enzymes Lab #2: Enzyme Catalysis pH As the pH is lowered (solution becomes acidic), the side chains will attract H+ ions and the enzymes shape is disrupted As the pH goes up, the enzyme will lose H+ ions and again, the shaped is altered Optimum pH is in the neutral range At very low or high pH, the enzyme denatures (breaks down) Lab #2: Enzyme Catalysis Temperature Increasing temperature cause enzyme reactions to go faster… up to a point At very high temps, the enzymes structure is broken down Many enzymes function well up to 40-50 C, and some are active up to 70-80 C Lab #2: Enzyme Catalysis Activators and Inhibitors Many molecules other than the substrate may interact with an enzyme If such a molecule increases the rate of reaction, it is called an activator; if it decreases the rate of reaction, it is an inhibitor Many well know poisons such as potassium cyanide and curare are inhibitors that interfere with the active sites of critical enzymes Lab #2: Enzyme Catalysis Lab #2 The enzyme used in this lab is catalase Catalase has 4 polypeptide chains, each composed of more than 500 amino acids One fucntion of catalase is