Download Prezentace aplikace PowerPoint

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Nucleic acid analogue wikipedia , lookup

Amino acid synthesis wikipedia , lookup

Biosynthesis wikipedia , lookup

Metabolic network modelling wikipedia , lookup

Fatty acid synthesis wikipedia , lookup

Pharmacometabolomics wikipedia , lookup

Butyric acid wikipedia , lookup

Basal metabolic rate wikipedia , lookup

Fatty acid metabolism wikipedia , lookup

Blood sugar level wikipedia , lookup

Biochemistry wikipedia , lookup

15-Hydroxyeicosatetraenoic acid wikipedia , lookup

Specialized pro-resolving mediators wikipedia , lookup

Metabolism wikipedia , lookup

Ketosis wikipedia , lookup

Hepoxilin wikipedia , lookup

Transcript
Acid-Base Balance Disorders
LECTURE FROM PATHOPHYSIOLOGY
2012/2013
OLIVER RÁCZ & EVA LOVÁSOVÁ
INSTITUTE OF PATHOPHYSIOLOGY
UPJŠ LF KOŠICE
23. 5. 2017
abre.ppt
1
Introductory remarks




Acidobasic balance (ABB) First of all ABB of
extracellular space – blood
7,4 = 40 nmol/l H+ (or 4*10-7 mol/l )
 (not H+ but H3O+)
CO2 production: 20 mols/day (300 – 360 l)
Strong (non-volatile) acid production: 60 – 70
mmols/day



oxidation of SH groups (amino acids): sulfate
hydrolysis of proteins, phospholipids: phospate
keto acids, lactic acid...
23. 5. 2017
abre.ppt
2
Logarithms
[H+]
Exp
pH
pH
nmol/l
mmol/l
100 mmol/l
-1
1
7,1
79
10 mmol/l
-2
2
7,2
63
1 mmol/l
-3
3
7,3
50
100 mmol/l
-4
4
7,4
40
10 mmol/l
-5
5
7,5
31
1 mmol/l
-6
6
7,6
25
100 nmol/l
-7
7
7,7
20
10 nmol/l
-8
8
7,8
16
1 nmol/l
-9
9 abre.ppt
7,9
12
23. 5. 2017
3
Physiological a pathological values
Blood
Physical exercise
Frontiers of life
Urine
Red cells
Muscle cells
Bile
Duodenal juice
Prostata cells
Gastric juice
23. 5. 2017
pH
7,36 - 7,44
7,10
6,80 - 7,70
H+ nmol/l
44 - 36
94
158 - 20
4,50 - 8,00
32000 – 10
7,28
6,90
6,2 - 8,5
6,5 - 7,6
4,50
1,2 - 3,0
53
126
631 - 3
316 - 25
32 mmol/l
1000 - 63
abre.ppt
4
ABB
Measurement
Not very long ago...
23. 5. 2017
abre.ppt
5
„Astrup”





Arterial or arterialised capillary blood
(hyperemisation of finger or auricle)
0,1 ml into heparinised capillary tube without air,
immediate measurement
pH and pCO2 electrochemically
pCO2
5,3 ± 0,53 kPa
1,2 ± 0,12 mmol/l
Other – calculated
 actual bicarbonates
24 ± 2 mmol/l
 anion gap
9 – 17 mmol/l
 standard bicarbonates
as actual
 base excess
0 ± 2 mmol/l
 buffer base
49 ± 3
23. 5. 2017
abre.ppt
6
Buffers and regulatory systems

Buffers only absorb the attacks of hydrogen ions and
prevent sudden big fluctuations of pH.
Closed systems





hydrogencarbonate
phosphate
haemoglobin/protein
bones (carbonate)
Regulatory systems – open, regulate the
hydrogencarbonate system


respiratory (provisional, delayed)
excretory (definite)
23. 5. 2017
abre.ppt
7
23. 5. 2017
abre.ppt
8
Henderson and Hasselblach
pH = pK + log [HCO3]/[CO2]
 pK = 6,1
 HCO3 = 24 mmol/l
 CO2 = 40 mmHg = 5,3 kPa = 1,2 mmol/l
 pH = 6,1 + log (24/1,2) = 6,1 + 1,3
 pH = 7,4
23. 5. 2017
abre.ppt
9
Simple ABR disorders
acidosis
pH < 7,35
metabolic
HCO3 < 22
respiratory
CO2 > 5,8
alkalosis
pH > 7,45
metabolic
HCO3 > 26
respiratory
CO2 < 4,8
Acute and chronic
Not compensated, partial compensated, corriged
23. 5. 2017
abre.ppt
10
Henderson and Hasselblach 1
metabolic acidosis – something is
decreasing bicarbonate (24)







HCO3 = 12 mmol/l
CO2 = 1,2 mmol/l
pH = 6,1 + log (12/1,2) = 6,1 + 1,0
pH = 7,1
COMPENSATION THROUGH
HYPERVENTILATION (CO2 OUT)
HCO3 = 12 mmol/l CO2 = 0,6 mmol/l
pH = 6,1 + log (12/0,6) = 6,1 + 1,3
pH = 7,4 is everything OK???
23. 5. 2017
abre.ppt
11
Henderson and Hasselblach 2
metabolic alkalosis – too much of
bicaarbonate







HCO3 = 36 mmol/l CO2 = 1,2 mmol/l
pH = 6,1 + log (36/1,2) = 6,1 + 1,5
pH = 7,6
COMPENSATION THROUGH
HYPOVENTILATION (CO2) RETENTION
HCO3 = 36 mmol/l CO2 = 1,8 mmol/l
pH = 6,1 + log (36/1,8) = 6,1 + 1,3
pH = 7,4 is everything OK???
23. 5. 2017
abre.ppt
12
Henderson and Hasselblach 3
respiratory acidosis – asfyxia







HCO3 = 24 mmol/l CO2 = 2,4 mmol/l
pH = 6,1 + log (24/2,4) = 6,1 + 1,0
pH = 7,1
COMPENSATION THROUGH ACID
EXCRETION
HCO3 = 48 mmol/l CO2 = 2,4 mmol/l
pH = 6,1 + log (48/2,4) = 6,1 + 1,3
pH = 7,4 is everything OK???
23. 5. 2017
abre.ppt
13
Henderson and Hasselblach 4
respiratory alkalosis – histeria, mountain
sickness







HCO3 = 24 mmol/l CO2 = 0,8 mmol/l
pH = 6,1 + log (24/0,8) = 6,1 + 1,5
pH = 7,6
COMPENSATION THROUGH ACID
RETENTION
HCO3 = 16 mmol/l CO2 = 0,8 mmol/l
pH = 6,1 + log (16/0,8) = 6,1 + 1,3
pH = 7,4 is everything OK???
23. 5. 2017
abre.ppt
14
Acids bind and decrease bicarbonate
Respiratory insufficiency increases CO2
Increased bicarbonate
Decreased CO2
20 HCO3
MAC
RAC
MAL
RAL
1 CO2
7,4
23. 5. 2017
abre.ppt
15
RAC, MAC, RAL, MAL
7,2
7,3
CO2
7,4
7,5
7,6
23. 5. 2017
abre.ppt
HCO3
16
Compensation
7,2
7,3
CO2
7,4
7,5
7,6
23. 5. 2017
abre.ppt
HCO3
17
Compensated disorders
7,2
7,3
CO2
7,4
7,5
7,6
23. 5. 2017
abre.ppt
HCO3
18
Respiratory compensation of MAC
Exspiration of CO2 (Kussmaul) balances the
decreased bicarbonate
 Delayed – respiration reacts to pH in the brain
 Danger – delay also during treatment:
 HCO3 and pH restored through treatment
 Hyperventilation persists
 Respiratory alkalosis!

23. 5. 2017
abre.ppt
19
Kidneys




Synthesis of bicarbonate in renal tubular cells
H20 + CO2  H2CO3  H+ + -HCO3
Complete resorbtion of bicarbonate into blood
Maximal excretion of H+ through exchange for
Na+, K+ and by protone pump
In filtrate H+ ions associate with ammonia and
primary phosphate
H+ + NH3 = NH4+
23. 5. 2017
H+ + HPO42- = H2PO4abre.ppt
20
Metabolic acidosis
pH < 7,35; HCO3 < 22 mmol/l




Increased production of endogenous acids –
diabetic ketoacidosis, lactic acidosis
Exogenous acids or compounds metabolised to
acids – ethylene glycol, methanol, salicylate
Bicarbonate losses through GIT or kidneys
(diarrhoe, intestinal fistulae, kidney diseases)
Insufficient excretion of H+ in acute or chronic
kidney failure and in some hereditary
tubulopathies
23. 5. 2017
abre.ppt
21
Severity of metabolic acidosis
pH
HCO3
Light
7,35 – 7,30
22 – 20
Medium
7,30 – 7,20
20 – 16
Severe
7,20 – 7,10
16 – 10
< 7,10
< 10
Very severe
23. 5. 2017
abre.ppt
22
Ketones ?
Lactate ?
Other ?
Anion gap
15
25
AG
HCO3-
15
25
15
15
140
110
100
Na+
100
Cl-
1: norma, anion gap 15 mmol/l
2: MAC, bicarbonate  ,chloride  , anion gap 15 mmol/l
3: MAC, bicarbonate  ,chloride norm, anion gap 
23. 5. 2017
abre.ppt
23
Ketoacidosis during starvation
Lipid catabolism
 Gluconeogenesis from oxalacetate, an
important intermediate od Krebs cycle
 Accumulation of acetylcoenzyme A
 Ketonemia without hyperglycaemia
 Decreased albumin, phosphate depletion

23. 5. 2017
abre.ppt
24
Diabetic ketoacidosis I
(cell starvation)







Nondiagnosed Type 1 DM, increased insulin
demand during intercurrent diseases
Hyperglycaemia
Polyuria and dehydratation (glycosuria)
Lipid degradation, gluconeogenesis, Krebs cycle
blockade
Ketonemia, ketonuria (instead of nitroprusside test
specific b-hydroxybutyrate assay – in blood, too)
Kussmaul breathing, disturbed consciousness, coma
Increased anion gap
23. 5. 2017
abre.ppt
25
Diabetic ketoacidosis II
(electrolyte disorder)
Hyponatremia, hypophosphatemia
 Intracellular potassium depletion due to

insulin deficiency
 outflow of K+ from cells (acidosis)
Urinary losses of K+ (osmotic diuresis, RAA
system activation in dehydration)


Not always connected with hypokalemia
 Dangerous hypokalemia can occur during
too rapid treatment with insulin
 FOLLOW IT!

23. 5. 2017
abre.ppt
26
Ketoacidosis in alcohol, methanol and
ethylene glycol intoxication
Ethanol acetaldehyde, b-hydroxybutyrate (AG) and
 thiamin deficiency (coenzyme of pyruvate
dehydrogenase)
 Hypalbuminemia, hypomagnesemia
 Tissue hypoxia (lactic acid)
 But: vomitus leads to MAL
 Methanol  formaldehyde, formic acid (AG)
 Optic nerve (alcohol dehydrogenase)
 Ethanol as treatment
 Ethylene glycol  glyoxal, oxalic acid (AG)
 Acute tubular necrosis
23. 5.
2017
27

Treatment:
dialysis andabre.ppt
ethanol

Lactic acidosis




Hypoxia (A) or block of degradation (B)
A – respiratory diseases, circulatory failure,
anaemia. With RAC
B – some oral antidiabetics of biguanide type
(withdrawn or strict indication –
contraindications), fructose, sorbitol
B – some malignancies, thiamin deficiency
hereditary enzyme defects (G6PD)
Norm < 1,3 mmol/l
> 5 mmol/l high mortality
23. 5. 2017
abre.ppt
28
Acidosis in kidney failure
Simple principle – decrease of glomerular
filtration < 0,3 ml/s (n = 2 ml/s*) the
kidneys are not able to resorb bicarbonate
and excrete acids
 Complicated reality – adaptory mechanisms
of tubuli / damage of tubuli
 Anion gap  phosphates  potassium 
 Dialysis

23. 5. 2017
abre.ppt
29
MAC with normal anion gap
(hyperchloremic)
Bicarbonate losses through GIT (diarrhoe)
 Renal tubular acidoses
 RTA II – proximal type
 RTA I – distal type
 RTA III – mixed
 RTA IV – with hyperkalemia

23. 5. 2017
abre.ppt
30
Acids and aldehydes





Formic acid and formaldehyde, (from methanol)
CH3OH  H2C=O  HCOOH
Acetic acid and acetaldehyde (from ethanol)
C2H5OH  CH3-HCO  CH3-COOH
Oxalic acid and glyoxal (from ethylene glycol “antifreeze”)
HOCH2-CH2OH  OHC-CHO  HOOC-COOH
Lactic acid (from glycolysis)
CH3-CHOH-COOH
b-hyrdroxybutyric, acetoacetic acid and acetone (stravation,
insulin deficiency)
CH3-CHOH-CH2-COOH, CH3-CO-CH2-COOH, CH3-CO-CH3
23. 5. 2017
abre.ppt
31
Metabolic alkalosis
pH > 7,45; HCO3- > 26 mmol/l

Decrease of extracellular space volume


Metabolites




smaller space and increased K+ and H + secretion due to
activation of renin-angiotensin-aldosterone system, Na
reabsorbtion, hypokaliemia
citrate from blood transfusions, milk alkali syndrome,
metabolites of ketone bodies
Mineralocorticoids – Na+ retention, K+ and H+ depletion
Chloride depletion – diuretics, vomitus, Mg deficiency
Dg. 23.
help:
Urinary chloride excretion
< or > 10 mmol/day32
5. 2017
abre.ppt
Respiratory acidosis
pH < 7,35; pCO2 > 5,8 kPa






Connection between ABR and tissue oxygen supply –
remember haemoglobin dissociation curve
CO2 in red cells is rapidly converted (carboanhydrase) to
H2CO3 which dissociates to H+ and HCO3Respiration is regulated by pH and pCO2
RAC – in respiratory disorders (as a part of global
respiratory insufficiency) and in hemodynamic failure
Renal compensation is not complete
Tisue hypoxia leads to lactate acidosis
23. 5. 2017
abre.ppt
33
Respiratory alkalosis
pH > 7,45; pCO2 < 4,8 kPa

Hyperventilation

psychogenic, fever, G negative sepsis
 mountain disease, CO intoxication
 some drugs – aminophyllin, salicylate
 some lungs diseases – pulm. embolism
Parestesia, cramps, arrhythmias (ionized Ca++)

23. 5. 2017
abre.ppt
34