Download Lecture Notes Session 20

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Time-to-digital converter wikipedia , lookup

Rotary encoder wikipedia , lookup

Multidimensional empirical mode decomposition wikipedia , lookup

Buck converter wikipedia , lookup

Schmitt trigger wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Flip-flop (electronics) wikipedia , lookup

Opto-isolator wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Integrating ADC wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Transcript
EE247
Lecture 20
• ADC Converters
– ADC architectures (continued)
– Comparator architectures
• Latched comparators
• Latched comparators incorporating preamplifier
• Sample-data comparators
– Offset cancellation
– Comparator architecture examples
– Flash ADC sources of error
• Sparkle code
• Meta-stability
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 1
Flash Converter
• B-bit flash ADC:
– DAC generates all
possible 2B -1 levels
– 2B-1 comparators
compare VIN to DAC
outputs
– Comparator output:
• If VDAC< VINÆ 0
• If VDAC > VINÆ1
VREF
D
A
C
VIN
fs
2B-1ÆB
Encoder
Digital
Output
– Comparator outputs form
thermometer code
– Encoder converts
thermometer to binary
code
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 2
VIN
Flash ADC Converter
Example: 3-bit Conversion Thermo
VIN VREF
VREF
me t
code er
fs
0
0
B-bits
1
1
0
Encoder
1
1
1
1
1
Time
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 3
Flash Converter
VIN
– Half cycleÆ VIN & VDAC
comparison
– Half cycleÆ 2B-1 to B
encoding
• High complexity:
2B-1 comparators
fs
R/2
R
R
..
..
.
Encoder
• Very fast: only 1 clock cycle
per conversion
VREF
Digital
Output
R
R
B-bits
• High capacitance @ input
node
EECS 247 Lecture 20: Data Converters
R/2
Thermometer
code
© 2005 H.K. Page 4
Folding Converter
MSB
ADC
VIN
Digital
Output
LSB
ADC
Folding Circuit
• Significantly fewer comparators than flash
• Fast
• Nonidealities in folder limit resolution to ~10-bits
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 5
fs
T/H
ADC
fs + T/4
• Extremely fast:
Limited by speed of T/H
ADC
fs + 2T/4
ADC
• Accuracy limited by mismatch
in individual ADCs (timing,
offset, gain, …)
EECS 247 Lecture 20: Data Converters
fs + 3T/4
Digital Output
VIN
4fs
Serial / Parallel Conversion
Time Interleaved Converter
ADC
© 2005 H.K. Page 6
Residue Type ADC
Partial Digital Output
VIN
Error
coarse ADC
(1 ... 6 Bit)
DAC
T/H & Gain
(optional)
• Quantization error output (“residuum”) enables
cascading for higher resolution
• Great flexibility for stages: flash, oversampling ADC, …
• Optional T/H enables parallelism (pipelining)
• Fast: one clock per conversion (with T/H), latency
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 7
Pipelined ADC
VIN
Stage 1
B1 Bits
Stage 2
B2 Bits
Stage K
Bk Bits
Digital Correction Logic
Digital output
up to (B1 + B2 + ... + )Bk) Bits
•
•
•
•
Approaches speed of flash, but much lower complexity
One clock per conversion, but K clocks latency
Efficient digital calibration possible
Versatile: from 16Bits / 1MS/s to 14Bits / 100MS/s
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 8
Algorithmic ADC
Start
of
conversion
VIN
Digital Output
Shift Register
& Correction Logic
coarse
ADC
2B
DAC
T/H
(1 ... 6 Bit)
Residue
• Essentially same as pipeline, but a single stage is
used for all partial conversions
• K clocks per conversion
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 9
Oversampled ADC
fs
VIN
fs/M
Digital
Decimation
Filter
H(z)
Digital
Output
DAC
• Hard to comprehend … “easy” to build
• Input is oversampled (M times faster than output rate)
• Reduces Anti-Aliasing filter requirements and
capacitor size
• Accuracy independent of component matching
• Very high resolution achievable (> 20 Bits)
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 10
Resolution [Bit]
16
14
12
10
8
B+
1)
Flash, Pipeline~1 to 2
18
Su ce
ss
Appcro
2 nd
ximivaeti
Ov Or
on~B
ers der
am 1ple Bit
d~
2 (0.4
Throughput Rate Comparison
B
S
~
al
eri
2
6
4
2
0
0
10
1
10
2
10
3
10
4
10
5
10
Clock Cycles per Conversion
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 11
Speed-Resolution Map
[www.v-corp.com]
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 12
High-Speed A/D Converters
• Flash Converter
– Comparator design considerations
– Binary Encoder
• Interpolation
• Folding
• Pipelined ADCs
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 13
Flash Converter
VREF
• Very fast: only 1 clock
cycle per conversion
VIN
fs
R/2
R
• High input capacitance
R
..
..
.
Encoder
• High complexity:
2B-1 comparators
Digital
Output
R
R
R/2
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 14
Flash Converter
Example: 8-bits ADC
VREF
• 8-bitsÆ 255 comparators
VIN
fs
R/2
R
• VREF=1V Æ 1LSB=4mV
..
..
.
• DNL<1/2LSB Æ
Comparator input
referred offset < 2mV
Encoder
R
Digital
Output
R
R
• 2mV =6σoffset
R/2
Æ σoffset < 0.33mV
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 15
Flash ADC Converter
Example: 8-bits ADC (continued)
Æ 1σOffset < 0.33mV
• Let us assume in the technology used:
– Voffset-per-unit-sqrt(WxL)=5mV
V0 ffset =
5mV
= 0.33mV
W ×L
→ W × L = 230 μ 2
2
→ CGS = CoxW × L = 765 fF
3
→ Total input capacitance: 255 × 0.765 = 195 pF !
Assuming: Cox = 5 fF / μ 2
– Issues:
• Si area quite large
• Large input capacitance
• Since depending on input voltage different number of comparator input
transistors would be on/off- input capacitance varies as input varies
Æ Nonlinear input capacitance could give rise to signal distortion
Ref: M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS
transistors," IEEE Journal of Solid-State Circuits, vol. 24, pp. 1433 - 1439, October 1989.
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 16
Flash ADC Converter
Example (continued)
Trade-offs:
– Allowing larger DNL of 1LSB instead of 0.5LSB:
• Increases the maximum allowable input-referred offset voltage
by a factor of 2
• Decreases the required device WxL by a factor of 4
• Reduces the input device area by a factor of 4
• Reduces the input capacitance by a factor of 4!
– Reducing the ADC resolution by 1-bit
• Increases the maximum allowable input-referred offset voltage
by a factor of 2
• Decreases the required device WxL by a factor of 4
• Reduces the input device area by a factor of 4
• Reduce the input capacitance by a factor of 4
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 17
Flash Converter
Assumption:
DNL=0.5LSB
Note:
Depending on min
acceptable yield,
numbers associated
with 2σ to 7σ offset
voltage
Maximum Comparator Voffset [mV]
Comparator Maximum Offset versus ADC Resolution
102
VREF=2V
10
VREF=1V
1
10-1
4
EECS 247 Lecture 20: Data Converters
6
8
ADC Resolution
10
© 2005 H.K. Page 18
Voltage Comparators
+
Vin
+
-
-
Vout (Digital Output)
Function: compare the instantaneous value of two analog signals
Important features:
•
•
•
•
•
•
•
•
Maximum clock rate fs Æ settling time, slew rate, small signal bandwidth
ResolutionÆ gain, offset
Overdrive recovery
Input capacitance (and linearity of input capacitance!)
Power dissipation
Common-mode rejection
Kickback noise
…
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 19
Voltage Comparator
Architectures
Comparator architectures
• High gain amplifier with differential analog input & single-ended large
swing output
– Output swing compatible with driving digital logic circuits
– Open-loop amplificationÆ no frequency compensation required
– Precise gain not required
•
Latched comparators; in response to a strobe, input stage disabled &
digital output stored in a latch till next strobe
– Two options for implementation :
• Latch-only comparator
• Low-gain amplifier + a high-sensitivity latch
•
Sample-data comparators
– T/H input
– Offset cancellation
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 20
CMOS Latched Comparators
Comparator amplification need not be linear
Æcan use a latch Æ regeneration
Æ Amplification + positive feedback
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 21
CMOS Latched Comparators
Latch can be modeled as a single-pole amp + positive feedback
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 22
CMOS Latched Comparator
Delay
g mV =
V
dV
+C
RL
dt
1
⎛
⎜1 − g R
m L
⎝
gm ⎛
1
1−
C ⎜⎝
g m RL
gm
C
dV
⎞
⎟V = dt
⎠
V2 1
⎞ t2
⎟ ∫t1 dt = ∫V 1 V dV
⎠
Latch Delay:
C ⎛
1
gm ⎜ 1 − 1
⎜
g m RL
⎝
For g m RL >> 1
τ D = t2 − t1 =
τD ≈
⎞ ⎛ V2 ⎞
⎟ ln ⎜ V ⎟
⎟ ⎝ 1⎠
⎠
C ⎛ V2 ⎞
ln
g m ⎜⎝ V1 ⎟⎠
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 23
Latch-Only Comparator
• Problem with latch-only comparator
topology:
– High input-referred offset voltage (as
high as 100mV!)
• Solution:
–Use preamplifier to amplify the signal
and reduce overall input-referred
offset
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 24
Comparator Preamplifier Gain-Speed Tradeoffs
• Amplifier maximum Gain-Bandwidth product for a given technology, typically a
function of maximum device ft
f u =unity gain frequency, f 0 = −3dB frequency & τ 0 = settling time
f0 =
fu
=
Apreamp
Magnitude
For example:
f0 =
τ0
fu
Apreamp
=
1GHz
= 100 MHz
10
Av
fu=10-2000MHz
1
=
= 1.6n sec
2π f 0
f0
fu
Frequency
Æ Tradeoff:
• To reduce the effect of latch offset Æ high preamp gain desirable
• Fast comparator Æ low preamp gain
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 25
Pre-Amplifier Tradeoffs
fs
Vi+
Vi-
• Example:
–
–
–
–
–
Av
Latch
Do+
Do-
Preamp
Latch offset
Preamp DC gain
Preamp input-referred latch offset
Input-referred preamplifier offset
Overall input-referred offset
50 to 100mV
10X
5 to 10mV
2 to 10mV
5.5 to 14mV
Æ Overall input-referred noise reduced by ~7 to 9X Æ ~extra 3-bit
resolution!
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 26
CMOS Latched Comparator Including Preamplifier
Delay
Latch delay found previously:
C ⎛ V2 ⎞
ln
g m ⎜⎝ V1 ⎟⎠
Assuming gain of Av for the preamplifier:
τD ≈
τD ≈
C ⎛ V0 ⎞
ln Av
g m ⎜⎝ Vin ⎟⎠
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 27
Latched Comparator Including Preamplifier
Example
VDD
M5
M3
M4
M6
-
Vo
+
CLK
Preamplifier gain:
M3
M3
g M 1 (VGS − Vth )
Av = mM 3 =
gm
(VGSM 1 − VthM 1 )
+
Vin
-
M1
M2
M9
bias
M8
M7
Comparator delay:
τD ≈
C ⎛ V0 ⎞
ln ⎜ Av
⎟
g m ⎝ Vin ⎠
EECS 247 Lecture 20: Data Converters
Preamp
Latch
© 2005 H.K. Page 28
Comparator Dynamic Behavior
Comparator Reset
Comparator Decision
CLK
TCLK
τdelay
vOUT
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 29
Comparator Resolution
CLK
VIN =10mV
1mV
vOUT
0.1mV
10μV
Δt = (gm/C).ln(Vin1/Vin2)
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 30
Comparator Voltage Transfer Function
Non-Idealities
Vout
ε
-0.5LSB
0.5LSB
Vin
VOffset
VOffset
Æ Comparator offset voltage
ε
Æ Meta-Stable region (output ambiguous)
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 31
Latched Comparator
fs
Vi+
Vi-
Av
Do+
Latch
Do-
Preamp
•
•
•
•
•
•
•
•
Clock rate fs
Resolution
Overload recovery
Input capacitance (and linearity!)
Power dissipation
Common-mode rejection
Kickback noise
…
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 32
Comparators Overdrive Recovery
Linear model for a single-pole amplifier:
UÆ amplification after time ta
During reset amplifier settles
exponentially to its zero input
condition with τ0=RC
Assume Vm Æ maximum input
normalized to 1/2lsb (=1)
EECS 247 Lecture 20: Data Converters
Example: Worst case input/output waveforms
Æ Limit output voltage swing by
1. Passive clamp
2. Active restore
3. Low gain/stage
© 2005 H.K. Page 33
Comparators Overdrive Recovery
Limiting Output
Clamp
Adds parasitic capacitance
EECS 247 Lecture 20: Data Converters
Active Restore
After outputs are latchedÆ Activate φR &
equalize output nodes
© 2005 H.K. Page 34
CMOS Comparator Example
•Flash ADC: 8bits, +-1/2LSB INL @ fs=15MHz (Vref=3.8V, LSB~15mV)
•No offset cancellation
Ref: A. Yukawa, “A CMOS 8-Bit High-Speed A/D Converter IC,” JSSC June 1985, pp. 775-9
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 35
Comparator with Auto-Zero
Ref: I. Mehr and L. Singer, “A 500-Msample/s, 6-Bit Nyquist-Rate ADC for Disk-Drive Read-Channel
Applications,” JSSC July 1999, pp. 912-20.
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 36
Auto-Zero Implementation
Ref:I. Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-Rate CMOS ADC,” JSSC
March 2000, pp. 318-25
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 37
Comparator Example
•Variation on Yukawa latch used
w/o preamp
•No dc power when φ high
•Good for low resolution ADCs
•M11 & M12 added to vary
comparator threshold
•To 1st order, for W1=W2 &
W11=W12
Vthlatch = W11/W1 x VR
where VR=VR+ - V RRef: T. B. Cho and P. R. Gray, "A 10 b, 20 Msample/s, 35 mW pipeline A/D converter," IEEE
Journal of Solid-State Circuits, vol. 30, pp. 166 - 172, March 1995
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 38
Comparator Example
•Used in a pipelined ADC with
digital correction
Æno offset cancellation
•Note differential reference
•M7, M8 operate in triode region
•Preamp gain ~10
•Input buffers suppress kick-back
Ref: S. Lewis, et al., “A Pipelined 5-Msample/s 9-bit Analog-to-Digital Converter” IEEE JSSC ,NO.
6, Dec. 1987
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 39
Bipolar Comparator Example
•Used in 8bit 400Ms/s & 6bit
2Gb/s flash ADC
•Signal amplification during
φ1 high, latch operates
when φ1 low
•Input buffers suppress kickback & input current
•Separate ground and
supply buses for front-end
preamp Æ kick-back noise
reduction
Preamp
Latched Comparator
Ref: Y. Akazawa, et al., "A 400MSPS 8b flash AD conversion LSI," IEEE International Solid-State Circuits Conference,
vol. XXX, pp. 98 - 99, February 1987
Ref: T. Wakimoto, et al, "Si bipolar 2GS/s 6b flash A/D conversion LSI," IEEE International Solid-State Circuits
Conference, vol. XXXI, pp. 232 - 233, February 1988
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 40
Flash Converter Sources of Error
VIN
VREF
fs
R/2
• Comparator input:
R
R
Encoder
..
..
.
Digital
Output
R
R
– Offset
– Nonlinear input capacitance
– Kickback noise (disturbs
reference)
– Signal dependent sampling
time
• Comparator output:
R/2
– Sparkle codes (… 111101000
…)
– Metastability
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 41
Typical Flash Output Encoder
Binary Output (negative)
VDD
b3
b2
b1
b0
0
0
b3 b2 b1 b0
OutputÆ 0 1 1 1
0
1
1
•
Thermometer
code Æ 1-of-n
decoding
•
Final encoding Æ
NOR ROM
0
1
0
1
Thermometer to Binary encoder ROM
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 42
Sparkle Codes
VDD
Erroneous 0
(comparator
offset?)
b3
b2
b1
b0
0
Correct Output:
1000
1
1
0
0
Erroneous
Output:
0000
1
1
0
1
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 43
Sparkle Tolerant Encoder
0
0
0
1
1
0
0
0
1
0
Protects against a single sparkle.
Ref: C. Mangelsdorf et al, “A 400-MHz Flash Converter with Error Correction,” JSSC February
1990, pp. 997-1002
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 44
Meta-Stability
Different gates interpret
metastable output X differently
0
0
Correct output:
1000
Erroneous output:
0000
0
1
X
Solutions:
–Latches (high power)
–Gray encoding
1
1
0
1
Ref: C. Portmann and T. Meng, “Power-Efficient Metastability Error Reduction in CMOS Flash
A/D Converters,” JSSC August 1996, pp. 1132-40
EECS 247 Lecture 20: Data Converters
© 2005 H.K. Page 45
Gray Encoding
Thermometer Code
Gray
Binary
T1
T2
T3
T4
T5
T6
T7
G3
G2
G1
B3
B2
B1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
1
0
0
0
0
0
1
0
0
1
1
1
1
1
1
0
0
0
1
1
0
1
0
0
1
1
1
1
1
0
0
1
1
1
1
0
1
1
1
1
1
1
1
0
1
0
1
1
1
0
1
1
1
1
1
1
1
1
0
0
1
1
1
•
Each Ti affects only one Gi
Æ Avoids disagreement of interpretation by multiple gates
Protects also against sparkles
Follow Gray encoder by (latch and) binary encoder
•
•
EECS 247 Lecture 20: Data Converters
G1 = T1T3 + T5 T7
G2 = T2 T6
G3 = T4
© 2005 H.K. Page 46