* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Application of Hard-Soft Acid-Base
Oxidative phosphorylation wikipedia , lookup
Electron transport chain wikipedia , lookup
Metalloprotein wikipedia , lookup
Fatty acid synthesis wikipedia , lookup
Fatty acid metabolism wikipedia , lookup
Genetic code wikipedia , lookup
Light-dependent reactions wikipedia , lookup
Nucleic acid analogue wikipedia , lookup
Photosynthetic reaction centre wikipedia , lookup
Biosynthesis wikipedia , lookup
Application of Hard-Soft Acid-Base (HSAB) Theory to Reactions between Amino Acids and Quinone Methides Samuel Edeh - Faculty mentor – Dr. Robert Dyer 2004 Student Research Conference Truman State University, Kirksville MO Introduction: Bronsted Acid/Base Concept – Acid donates H+ – Base accepts H+ Lewis Acid/Base Concept – Acid accepts electrons (e-) – Base donates electrons (e-) Introduction: Hard-Soft Acid-Base (HSAB) Theory – Ralph G. Pearson (1963) – “Hard acids prefer to associate with hard bases, and soft acids prefer to associate with soft bases.” Background: Molecular orbitals – Highest Occupied Molecular Orbital, HOMO – Lowest Unoccupied Molecular Orbital, LUMO (+) (-) Unocccupied Molecular Orbitals Occcupied Molecular Orbitals En+2 En+1 En ↑↓ E3 ↑↓ ↑↓ ↑↓ E2 E1 LUMO HOMO Background: Electron affinity, A – Energy change when atom accepts an electron – Energy of LUMO (-) En+2 En+1 En ↑↓ E3 ↑↓ ↑↓ ↑↓ E2 E1 LUMO HOMO Background: Ionization energy, I – Energy required to remove an electron from an atom – Energy of HOMO (+) En+2 En+1 En ↑↓ E3 ↑↓ ↑↓ ↑↓ E2 E1 LUMO HOMO Background: Absolute hardness, η I−A η= 2 η= HOMO− LUMO 2 http://web.utk.edu/~cebarnes/C430/lecs/weblec6.pdf 2η = HOMO − LUMO Background: Absolute softness, σ σ= 1 η Reactivity – “Hard acids prefer to associate with hard bases, and soft acids prefer to associate with soft bases.” Method: Calculate – LUMO and HOMO energies – η Predict reactivity (Based on η) Computer program Gaussian Experiment: O O (H3C)3C H2N C(CH3)3 CH C OH CH2 + CH2 CH2 CH2 NH2 tert-ButylMethyl Quinone Methide (t-BMQM) Arginine Computation: tert-ButylMethyl Quinone Methide (t-BMQM) – Electrophile (accepts electrons into LUMO) – HF 3-21G* – HF 6-311G Amino acids – Nucleophiles (donate electrons from HOMO) – HF 3-21G* – HF 6-311G Geometry optimization HF 3-21G* HOMO LUMO |2η| t-BMQM -0.32053 0.05119 0.37172 Arginine Isoleucine Tryptophan Cysteine Lysine Tyrosine -0.34805 -0.36465 -0.28232 -0.36193 -0.36129 -0.31102 0.19350 0.18352 0.13472 0.12653 0.18477 0.13958 0.54155 0.54817 0.41704 0.48846 0.54606 0.45060 Geometry optimization HF 6-311G HOMO LUMO |2η| t-BMQM -0.3185 0.04561 0.36414 Arginine Isoleucine Tryptophan Cysteine Lysine Tyrosine -0.3309 -0.3744 -0.2866 -0.3659 -0.3714 -0.3164 0.13512 0.14242 0.11992 0.12568 0.14950 0.12339 0.46603 0.51681 0.40649 0.49154 0.52090 0.43977 Result analysis: Relative rates for reaction between t-BMQM and amino acids k (M-1s-1)† Cys Tyr Arg Tryp Ile † 3320 45.0 17.2 14.1 7.90 HF 3-21G* Tryp Tyr Cys Arg Ile J. Org. Chem. 1997, 62, 1820-1825 HF 6-11G Tryp Tyr Arg Cys Ile Why is data discrepant with published relativities? Used fairly simple Gaussian computation Ignored nature of reaction system -pH -Temperature -Solvent Optimization level Why study quinone methides? Good guy: -Melanization -Sclerotization -Lignin formation Bad guy: -Cytotoxicity Acknowledgments Thanks to – Dr. Robert G. Dyer – You for listening Questions? ftÅâxÄ Xwx{