* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Complex numbers Summary PPTX
Survey
Document related concepts
Transcript
Complex numbers •Definitions •Conversions •Arithmetic •Hyperbolic Functions Define the imaginary number i 1 so that i 2 1, If z x iy then x is the real part of z and y is the imaginary part i 3 i i 2 i i 4 i 2i 2 1 1 1 Im z Argand diagram x iy y r x Main page Re z Complex numbers: Definitions If z x iy then the conjugate of z , written z or z * is x iy If the complex number z x iy then the Modulus of z is written as z and the Argument of z is written as Arg (z ) so that z x 2 y 2 r , Arg ( z ) tan 1 ( y / x) r , are shown in the Argand diagram Cartesian form (Real/Imaginary form) z x iy Polar form Complex numbers: Forms If is the principal argument of a complex number z then Re z Main page Re z Polar to Cartesian form x r cos y r sin Cartesian to Polar form Eulers formula cos i sin ei Im z r x Principal argument x iy y (Modulus/Argument form) z r (cos i sin ) r cis Im z Exponential form z re i r x2 y2 tan 1 ( y / x) NB. You may need to add or 1 subtract to tan ( y / x) in order that gives z in the correct quadrant Let z a ib and w c id Multiplication z w (a ib )(c id ) (ac bd ) i (ad bc) Addition/ subtraction z w (a c) i (b d ) Equivalence Complex numbers: Arithmetic z w a c and b d De Moivres theorem Division (cos i sin ) n cos n i sin n z z w z w (a ib )(c id ) w w w w 2 c2 d 2 Polar/ exponential form: Powers/ roots ac bd bc ad 2 i 2 2 2 c d c d If z then r n ei ( n ) Polar/ exponential form: Mult/division If z then r cis re i and w s cis se i z w rs cis( ) rse and z r r cis( ) e i( ) w s s r cis re i z n r n cis (n ) and n n z n r cis n i( ) re n i Main page Hyperbolic Sine & Cosine Functions cosh x 1 x 1 x e e x and sinh x e e x 2 2 Other Hyperbolic Functions sinh x tanh x , cosh x 1 cosechx , sinh x 1 sechx cosh x cosh x 1 coth x sinh x tanh x Equivalences Main page cos i sin ei cos i cosh and sin i i sinh cosh i cos and sinh i i sin Complex numbers: Hyperbolic Functions Sine & Cosine Functions in Exponential form 1 i e e i and 2 1 i sin e e i 2i cos Eulers formula Complex numbers That’s all folks! Main page