* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Power Electronics
Three-phase electric power wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Electrical substation wikipedia , lookup
Electronic engineering wikipedia , lookup
Power factor wikipedia , lookup
Power inverter wikipedia , lookup
Standby power wikipedia , lookup
Wireless power transfer wikipedia , lookup
Voltage optimisation wikipedia , lookup
Distribution management system wikipedia , lookup
Electrification wikipedia , lookup
Audio power wikipedia , lookup
Power over Ethernet wikipedia , lookup
Amtrak's 25 Hz traction power system wikipedia , lookup
Rectiverter wikipedia , lookup
History of electric power transmission wikipedia , lookup
Power MOSFET wikipedia , lookup
Buck converter wikipedia , lookup
Electric power system wikipedia , lookup
Mains electricity wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Power engineering wikipedia , lookup
POWER ELECTRONICS ECE 105 Industrial Electronics Engr. Jeffrey T. Dellosa College of Engineering and Information Technology Caraga State University Ampayon, Butuan City 1 Power Electronics Introduction Power electronics is the technology of converting electric power from one form to another using power semiconductor devices based circuitry. It incorporates concepts from analog circuits, electronic devices, control systems, power systems, magnetics, and electric machines. 2 The converter enables either the following: DC-DC: conversion AC-DC: rectification DC-AC: inversion AC-AC: cycloconversion Power Electronics 3 In the power converter, the power semiconductor devices function as switches, which operate statically, that is, without moving contacts. The time durations, as well as the turn ON and turn OFF operations of these switches are controlled in such a way that an electrical power source at the input terminals of the converter appears in a different form at its output terminals. Power Electronics 4 Power Electronics Here power converter high conversion efficiency is essential! High efficiency leads to low power loss within converter. Efficiency is a good measure of converter performance. Hence, a goal of current converter technology is to construct converters of small size and weight, which process substantial power at high efficiency. 5 Power Electronics Components used in power electronics circuitry are: 6 Rapid development of power semiconductor devices led to significant improvement in, ◦ Speed ◦ Power capability ◦ Efficiency Hence increase the range of applications ◦ DC Servo control ◦ AC motor control ◦ Sophisticated power supplies (switching-mode, uninterruptible) ◦ High power DC transmission Power Electronics 7 Power Electronics Often power loss in power semiconductor device (when viewed as an ideal switch) is based on the following: Thus an ideal power semiconductor device is characterized by zero resistance during ON-state, infinite resistance during OFFstate, zero transient time from ON to OFF and vice-versa. Practical power semiconductor device has limited voltage and current handling capability, an ON-resistance greater than zero and finite switching times. 8 Power Electronics Power Electronics Devices ◦ Power Bipolar Transistors (BJTs) ◦ Power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) ◦ Insulated Gate Bipolar Transistors (IGBTs) ◦ Thyristors ◦ Gate Turn-Off Thyristors (GTOs) ◦ Power Diodes 9 Power Electronics 10 Power Electronics 11 Alternatively power semiconductor devices can be classified into 3 groups according to their degree of controllability. Power Diodes - ON and OFF states controlled by the power cct. Thyristors - Latched ON by a control signal but must be turned OFF by the power cct. Controllable Switches - Turned ON and OFF by control signals. The controllable switches include i) BJTs ii) MOSFETs iii) Gate Turn-OFF Thyristors (GTOs) iv) Insulated Gate Bipolar Transistors (IGBTs) Power Electronics 12 Power Electronics Power Diodes The circuit symbol for the diode and its steady state v-i characteristics are as shown. 13 Power Electronics Power Diodes 14 Power Electronics Thyristors The circuit symbol for the thyristor and its steady state v-i characteristics are as shown. 15 Power Electronics Thyristors In its OFF state, the thyristor can block a forward polarity voltage and not conduct, as is shown by the off-state portion of the i-v characteristic. The thyristor can be triggered into the ON state by applying a pulse of positive gate current for a short duration provided that the device is in its forward-blocking state. The resulting i-v relationship is shown by the ON state portion of the characteristics shown. The forward voltage drop in the ON state is only a few volts (typically 1-3V depending on the device blocking voltage rating). 16 Power Electronics Power BJTs The circuit symbol for the BJTs and its steady state v-i characteristics are as shown. 17 Power Electronics Power BJTs As shown in the i-v characteristics, a sufficiently large base current results in the device being fully ON. This requires that the control circuit to provide a base current that is sufficiently large so that I IB C hFE where hFE is the dc current gain of the device BJTs are current-controlled devices, and base current must be supplied continuously to keep them in the ON state: The dc current gain hFE is usually only 5-10 in high-power transistors. BJTs are available in voltage ratings up to 1400V and current ratings of a few hundred amperes. 18 Power Electronics Power BJTs BJT has been replaced by MOSFET in low-voltage (<500V) applications BJT is being replaced by IGBT in applications at voltages above 500V 19 Power Electronics Power MOSFETs The circuit symbol for the MOSFETs and its steady state v-i characteristics are as shown. Drain(D) iD + + Gate(G) + VGD VDS - VGS - Source(S) 20 Power Electronics Power MOSFETs Power MOSFET is a voltage controlled device. MOSFET requires the continuous application of a gate-source voltage of appropriate magnitude in order to be in the ON state. The switching times are very short, being in the range of a few tens of nanoseconds to a few hundred nanoseconds depending on the device type. 21 Power Electronics Power MOSFETs 22 Power Electronics IGBTs The circuit symbol for the IGBTs and its steady state v-i characteristics are as shown. 23 Power Electronics IGBTs The IGBT has some of the advantages of the MOSFET, & the BJT combined. Similar to the MOSFET, the IGBT has a high impedance Gate, which requires only a small amount of energy to switch the device. Like the BJT, the IGBT has a small ON-state voltage even in devices with large blocking voltage ratings (for example, VON is 2-3V in a 1000-V device).. 24 Power Electronics IGBTs 25 Power Electronics Several Applications of Power Electronics A laptop computer power supply system . 26 Power Electronics Several Applications of Power Electronics An electric vehicle power and drive system. 27 Power Electronics Transient Protection of Power Devices dv dt Snubber circuit limits di dt , as well as voltage and peak current in a switching device to safe specified limits! Switching device’s dv dt rating is significant during the switching device (e.g. thyristor) turnOFF process. Voltage can increase very rapidly to high levels. If the rate rise is excessive, it may cause damage to the device. 28 Power Electronics Transient Protection of Power Devices 29 Power Electronics Transient Protection of Power Devices 30 Power Electronics Transient Protection of Power Devices 31 Power Electronics Transient Protection of Power Devices 32 Power Electronics Transient Protection of Power Devices 33 Power Electronics Transient Protection of Power Devices 34 Power Electronics Power and Harmonics in Non-sinusoidal Systems Non-sinusoidal waveforms are waveforms that are not sine waves. , Non-sinusoidal waveforms can be described as being made of harmonics (multiple sine waves of different frequencies). Thus for a waveform whose fundamental frequency is , than second harmonic has a frequency 2 and so on. Waveforms occurring at frequencies of 2, 4, 6, … are called even harmonics; Those occurring at frequencies of 3, 5, 7, ... are called odd harmonics. 35 Power Electronics Power and Harmonics in Non-sinusoidal Systems Thus for the circuit shown (a non-sinusoidal system), expressing the circuit’s voltage and current as Fourier series: , 36 Power Electronics Power and Harmonics in Non-sinusoidal Systems , 37 Power Electronics Power and Harmonics in Non-sinusoidal Systems Expression for average power becomes , So power is transmitted to the load only when the Fourier series of v(t) and i(t) contain terms at the same frequency. Eg. if the voltage & current both contain 3rd harmonic, then they lead to the average power 38 Power Electronics Power and Harmonics in Non-sinusoidal Systems With the rms voltage defined as , Inserting Fourier series into the above, an expression of rms voltage for non-sinusoidal voltage waveform Notice harmonics always increase rms value & increased in rms values increased losses! 39 Power Electronics Power and Harmonics in Non-sinusoidal Systems For efficient transmission of energy from a source to a load, it is desired to maximize , average power, while minimizing rms current and voltage (and hence minimizing losses). Power factor is a figure of merit that measures how efficiently energy is transmitted. It is defined as Notice harmonics always increase rms value & increased in rms values increased losses! 40 Power Electronics Basic Magnetics Inductance (measured in Henry) is an effect which results from the magnetic field that forms around a current carrying conductor. Inductance can be increased, by looping the conductor into a coil which creates a larger magnetic field. An inductor is usually constructed as a coil of copper wire, wrapped around a core either of air or of ferrous material. Core materials with a higher permeability than air confine the magnetic field closely to the inductor, thereby increasing the inductance. Inductors come in many shapes. Most are constructed as enamel coated wire wrapped around a ferrite bobbin with wire exposed on the outside, while some enclose the wire completely in ferrite and are called "shielded". Some inductors have an adjustable core, which enables changing of the inductance. Small inductors can be etched directly onto a printed circuit board by laying out the trace in a spiral pattern. 41 Power Electronics Basic Magnetics Current flowing through an inductor creates a magnetic field which has an associated electromotive force (emf). This inductor’s emf opposes the change in applied voltage. The resulting current in ,the inductor resists the change but does rise! • An inductor resists changes in current. • An ideal inductor would offer no resistance to direct current; however, all real-world inductors have non-zero electrical resistance. In general, the relationship between v(t) across an inductor with inductance L and i(t) passing through it is described by the differential equation: The inductor is used as the energy storage device in power electronics circuitries. 42 Power Electronics Basic Magnetics Transformers -- widely used in low-power electronic ccts for voltage step-up or stepdown, & for isolating DC from two ccts while maintaining ac continuity. -- consists of 2 windings linked by a mutual magnetic field. When one winding, the primary has an ac voltage applied to it, a varying flux is developed; the amplitude of the flux is dependent on the applied voltage and number of turns in the winding. Mutual flux linked to the secondary winding induces a voltage whose amplitude depends on the number of turns in the secondary winding. 43 Power Electronics Basic Magnetics Mutual magnetic flux coupling is accomplished simply with an air core but considerably more effective flux linkage is obtained with the use of a core of iron or ferromagnetic material with higher permeability than air. The relationship between voltage, current, & impedance between the primary & secondary windings of the transformer may be calculated using the following relationships. 44 Power Electronics Basic Magnetics The basic phase relationship between the signals at the transformer input & output ports may be in-phase, or out-of-phase. Conventionally, the ports that are in-phase 1, and 3, are marked by dot notation as shown. 45 Power Electronics Basic Magnetics EXAMPLE 46