Download Business Calculus Summer Assignment 2016

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Infinitesimal wikipedia , lookup

Large numbers wikipedia , lookup

Line (geometry) wikipedia , lookup

Continuous function wikipedia , lookup

Collatz conjecture wikipedia , lookup

Proofs of Fermat's little theorem wikipedia , lookup

Big O notation wikipedia , lookup

History of the function concept wikipedia , lookup

Function (mathematics) wikipedia , lookup

Fundamental theorem of algebra wikipedia , lookup

Infinity wikipedia , lookup

Addition wikipedia , lookup

Non-standard calculus wikipedia , lookup

History of logarithms wikipedia , lookup

Function of several real variables wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Elementary mathematics wikipedia , lookup

Transcript
Business Calculus
Summer Assignment 2016
The following packet contains topics and definitions that you will be required to know in order to
succeed in Business Calculus this year. You are advised to be familiar with each of the concepts and to
complete the included problems by September 1, 2016. All of these topics were discussed in either
Algebra II or Precalculus and will be used frequently throughout the year. All problems that you are
to complete are marked in bold. All problems are expected to be completed. You will be tested on
this material.
A Precalculus Review
Things to Remember:
Rational numbers are any real numbers that can be expressed as the ration of two integers. This
includes all terminating and all repeating decimals.
Examples:
2
5
= 0.4
7
1
7
8
=7
= 0.875
1
3
= 0.333 …
Irrational numbers are any real numbers that cannot be expressed as the ratio of two integers.
This will include all non-terminating, non-repeating decimals.
Examples:
√2 β‰ˆ 1.4142135623 …
πœ‹ β‰ˆ 3.1415926535 …
Properties of Inequalities:
Let a, b, c and d be real numbers.
1. Transitive property: a<b and b<c οƒ  a < c
2. Adding inequalities: a<b and c<d οƒ  ac < bc, c > 0
3. Multiplying by a positive constant: a < b οƒ  ac < bc, c > 0
4. Multiplying by a negative constant: a<b οƒ  ac > bc, c < 0
5. Adding a constant: a < b οƒ  a + c < b + c
6. Subtracting a constant: a < b οƒ  a – c < b – c
Definition of Absolute Value:
The absolute value of a real number a is:
π‘Ž 𝑖𝑓 π‘Ž β‰₯0
βˆ’π‘Ž 𝑖𝑓 π‘Ž<0
|π‘Ž| = {
1
𝑒 β‰ˆ 2.7182818284
Properties of Absolute Value:
1. Multiplication: |π‘Žπ‘| = |π‘Ž||𝑏|
π‘Ž
|π‘Ž|
2. Division: |𝑏 | = |𝑏| , 𝑏 β‰  0
3. Power: |π‘Žπ‘› | = |π‘Ž|𝑛
4. Square Root: βˆšπ‘Ž2 = |π‘Ž|
Distance Between Two Points:
The distance d between any two points x1 and x2 on a real number line is:
𝑑 = |π‘₯1βˆ’ π‘₯2 | = √(π‘₯2 βˆ’ π‘₯1 )2
The distance d between any two points (x1, y1) and (x2, y2) on a Cartesian plane is:
𝑑 = √(π‘₯2 βˆ’ π‘₯1 )2 + (𝑦2 βˆ’ 𝑦1 )2
Find the distance between each pair of points:
1) (6, -2) and (-5, 12)
2) (5.8, -1) and (7, -4)
Midpoints:
The midpoint of the interval with endpoints a and b is found by taking the average of the
endpoints.
𝑀=
π‘Ž+𝑏
2
The midpoint of a segment with endpoints at (x1, y1) and (x2, y2) is found by taking the average of
the two coordinate values.
π‘₯1 + π‘₯2 𝑦1 + 𝑦2
𝑀=(
,
)
2
2
Find the midpoint of each segment with the indicated endpoints:
3) (-4, 3) and (7, 12)
4) (10, -3) and (-14, -9)
2
Properties of Exponents:
1. Whole number exponents:
2. Zero exponents:
π‘₯ 𝑛 = π‘₯ βˆ™ π‘₯ βˆ™ π‘₯ βˆ™ … βˆ™ π‘₯ (n factors of x)
π‘₯ 0 = 1, π‘₯ β‰  0
3. Negative Exponents:
1
π‘₯ βˆ’π‘› = π‘₯ 𝑛
𝑛
√π‘₯ = π‘Ž β†’ π‘₯ = π‘Žπ‘›
4. Radicals (principal nth root):
5. Rational exponents:
π‘₯
1⁄
𝑛
6. Rational exponents:
π‘₯
π‘šβ„
𝑛
𝑛
= √π‘₯
𝑛
= √π‘₯ π‘š
Operations with Exponents:
1. Multiplying like bases:
π‘₯ 𝑛 π‘₯ π‘š = π‘₯ π‘š+𝑛
2. Dividing like bases:
π‘₯π‘š
π‘₯𝑛
3. Removing parentheses:
(π‘₯𝑦)𝑛 = π‘₯ 𝑛 𝑦 𝑛
= π‘₯ π‘šβˆ’π‘›
π‘₯ 𝑛
π‘₯𝑛
(𝑦) = 𝑦𝑛
(π‘₯ 𝑛 )π‘š = π‘₯ π‘›π‘š
Simplify each of the following expressions:
5) πŸπ’‚πŸ π’ƒβˆ’πŸ’ βˆ™ πŸ’π’‚βˆ’πŸ– π’ƒπŸ”
6)
πŸ–π’‚πŸ π’ƒβˆ’πŸ
πŸ’π’‚πŸ’ π’„βˆ’πŸ“
πŸ‘π’™πŸ’
Special Products and Factorization Techniques
Quadratic Formula:
π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐 = 0 β†’ π‘₯ =
πŸ‘
7) (π’šβˆ’πŸ)
βˆ’π‘±βˆšπ‘2 βˆ’4π‘Žπ‘
2π‘Ž
Solve the following equations:
8) πŸ‘π’™πŸ βˆ’ πŸ’π’™ βˆ’ 𝟐 = 𝟎
9) βˆ’πŸ“π’™πŸ + πŸ”π’™ + πŸ’ = 𝟎
3
Special Products:
π‘₯ 2 βˆ’ π‘Ž2 = (π‘₯ βˆ’ π‘Ž)(π‘₯ + π‘Ž)
π‘₯ 3 βˆ’ π‘Ž3 = (π‘₯ βˆ’ π‘Ž)(π‘₯ 2 + π‘Žπ‘₯ + π‘Ž2 )
π‘₯ 3 + π‘Ž3 = (π‘₯ + π‘Ž)(π‘₯ 2 βˆ’ π‘Žπ‘₯ + π‘Ž2 )
Factor each of the following:
10) πŸ’π’™πŸ βˆ’ πŸπŸ’πŸ’
11) πŸ–π’™πŸ‘ βˆ’ πŸπŸ•
12) πŸ”πŸ’π’™πŸ‘ + πŸπŸπŸ“π’šπŸ‘
13) π’™πŸ βˆ’ πŸπŸ‘π’™ + πŸ’πŸ
14) πŸ–π’™πŸ βˆ’ πŸπŸŽπ’™ βˆ’ πŸ‘
15) πŸ’π’™πŸ‘ + πŸ–π’™πŸ βˆ’ πŸ“π’™ βˆ’ 𝟏𝟎
Binomial Theorem:
(π‘₯ + π‘Ž)2 = π‘₯ 2 + 2π‘Žπ‘₯ + π‘Ž2
(π‘₯ βˆ’ π‘Ž)2 = π‘₯ 2 βˆ’ 2π‘Žπ‘₯ + π‘Ž2
(π‘₯ + π‘Ž)3 = π‘₯ 3 + 3π‘Žπ‘₯ 2 + 3π‘Ž2 π‘₯ + π‘Ž3
(π‘₯ βˆ’ π‘Ž)3 = π‘₯ 3 βˆ’ 3π‘Žπ‘₯ 2 + 3π‘Ž2 π‘₯ βˆ’ π‘Ž3
Expand each of the following:
16) (𝒙 + πŸ’)𝟐
17) (𝒙 βˆ’ πŸ”)𝟐
18) (𝒙 + πŸ‘)πŸ‘
4
19) (𝒙 βˆ’ 𝟐)πŸ‘
Lines
Slope:
𝑦2 βˆ’π‘¦1
π‘₯2 βˆ’π‘₯1
Slope Intercept Form:
y = mx + b
Standard Form:
ax + by = c
Point-Slope Form:
y - y1 = m(x – x1)
Use the two points to write the equation of the line in all three forms:
20) (2, -5) and (7, 12)
Transformations
Vertical Translations:
𝑦 = 𝑓(π‘₯) ± 𝑐
Horizontal Translations:
𝑦 = 𝑓(π‘₯ ± 𝑐)
Y-axis flip:
𝑦 = 𝑓(βˆ’π‘₯)
X-axis flip:
𝑦 = βˆ’π‘“(π‘₯)
Describe each of the following transformations:
21) 𝒇(𝒙) = βˆ’π’™πŸ + πŸ’
22) 𝒇(𝒙) = |βˆ’π’™| βˆ’ πŸ’
5
23) 𝒇(𝒙) = βˆšπ’™ βˆ’ πŸ‘
Functions
Domain:
a set of all possible values for the independent variable
Range:
a set of all possible values for the dependent variable
Find the domain and range of the following functions:
24) π’š = βˆšπ’™ + 𝟏
πŸ‘π’™βˆ’πŸ’
25) π’š = πŸ’π’™+𝟏𝟎
26) π’š = {
𝟏 βˆ’ 𝒙, 𝒙 < 1
βˆšπ’™ βˆ’ 𝟏, 𝒙 β‰₯ 𝟏
Even and Odd Functions:
𝐼𝑓 𝑓(βˆ’π‘₯) = βˆ’π‘“(π‘₯), π‘‘β„Žπ‘’π‘› π‘‘β„Žπ‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘œπ‘‘π‘‘
𝐼𝑓 𝑓(βˆ’π‘₯) = 𝑓(π‘₯), π‘‘β„Žπ‘’π‘› π‘‘β„Žπ‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑖𝑠 𝑒𝑣𝑒𝑛
Determine if the function is even or odd:
27) π’š = πŸ‘π’™πŸ
28) π’š = πŸπ’™πŸ + πŸ’π’™
29) π’š = πŸ’π’™πŸ‘
End Behavior:
-If the degree of f is even and the lead term coefficient is positive, then the left and right
ends of the function both approach positive infinity.
-If the degree of f is even and the lead term coefficient is negative, then the left and
right ends of the function both approach negative infinity.
-If the degree of f is odd and the lead term coefficient is positive, then the left end
approaches negative infinity and the right end approaches positive infinity.
-If the degree of f is odd and the lead term coefficient is negative, then the left end
approaches positive infinity and the right end approaches negative infinity.
Describe the end behavior for each of the following functions:
30) 𝒇(𝒙) = βˆ’πŸ‘π’™πŸ + πŸ’π’™ βˆ’ 𝟐
31) 𝒇(𝒙) = πŸπ’™πŸ‘ βˆ’ πŸ‘π’™πŸ + πŸ”π’™ βˆ’ 𝟏
6
32) 𝒇(𝒙) = πŸ“π’™πŸ“ βˆ’ πŸ”
Functions
Evaluate each of the following for the function 𝒇(𝒙) = π’™πŸ βˆ’ πŸ’π’™ + πŸ•:
34) 𝒇(π’šπŸ‘ ) =
33) 𝒇(πŸ’) =
35) 𝒇(𝒙 + π’š) =
Evaluate the following compositions of functions:
Let 𝒇(𝒙) = πŸπ’™ βˆ’ πŸ‘ and π’ˆ(𝒙) = π’™πŸ + 𝟏
36) 𝒇(𝒙) βˆ™ π’ˆ(𝒙)
37) 𝒇(π’ˆ(𝒙))
38) π’ˆ(𝒇(𝒙))
Inverse Functions
In order to calculate an inverse of a function algebraically, you must switch all of the x and y
variables and solve the new equation for y. The inverse only exists if the resulting equation is a
function.
Find the inverse (if it exists) of each of the following functions:
39) 𝒇(𝒙) = πŸ‘π’™ + 𝟐
40) 𝒇(𝒙) = πŸπ’™πŸ βˆ’ πŸ’
7
41) 𝒇(𝒙) = βˆšπ’™ + 𝟏
Logarithms
Natural Logarithmic Function:
𝑙𝑛π‘₯ = 𝑏 𝑖𝑓 π‘Žπ‘›π‘‘ π‘œπ‘›π‘™π‘¦ 𝑖𝑓 𝑒 𝑏 = π‘₯
Inverse Properties of Logarithms:
𝑙𝑛𝑒 π‘₯ = π‘₯
𝑒 𝑙𝑛π‘₯ = π‘₯
Solve each of the following equations:
42) 𝟏𝟎 + π’†πŸŽ.πŸπ’™ = πŸπŸ’
43) πŸ‘ + πŸπ’π’π’™ = πŸ•
Graph the following equations without a calculator:
𝒍𝒏𝒙 + 𝟏, 𝒙 < 1
46) 𝒇(𝒙) = { π’™βˆ’πŸ
𝒆 ,𝒙 β‰₯ 𝟏
45) 𝒇(𝒙) = βˆ’πŸ + 𝒆𝒙+𝟏
44) 𝒇(𝒙) = 𝒍𝒏(𝒙 βˆ’ 𝟐) + πŸ‘
y
y
x
y
x
8
x
Properties of Logarithms
Product Property:
π‘™π‘œπ‘”π‘ π‘Ž + π‘™π‘œπ‘”π‘ 𝑐 = π‘™π‘œπ‘”π‘ (π‘Žπ‘)
Quotient Property:
π‘™π‘œπ‘”π‘ π‘Ž βˆ’ π‘™π‘œπ‘”π‘ 𝑐 = π‘™π‘œπ‘”π‘ ( 𝑐 )
Power Property:
π‘™π‘œπ‘”π‘ π‘Žπ‘ = 𝑐 βˆ™ π‘™π‘œπ‘”π‘ π‘Ž
π‘Ž
Condense each of the following to a single logarithm:
𝟏
48) πŸ‘ [πŸπ’π’(𝒙 + πŸ‘) + 𝒍𝒏𝒙 βˆ’ 𝒍𝒏(π’™πŸ βˆ’ 𝟏)]
47) πŸ’π’π’π’™ + πŸ”π’π’π’š βˆ’ 𝒍𝒏𝒛
Rewrite the expression as a sum, difference or multiple of logarithms:
π’™πŸ‘
πŸ‘π’™(𝒙+𝟏)
49) π’π’βˆšπ’™+𝟏
50) 𝒍𝒏 (πŸπ’™+𝟏)𝟐
Compound Interest
Let P be the amount deposited, t the number of years, A the balance and r the annual interest
rate (in decimal form).
π‘Ÿ 𝑛𝑑
1. Compounded n time per year:
𝐴 = 𝑃 (1 + 𝑛)
2. Compounded continuously:
𝐴 = 𝑃𝑒 π‘Ÿπ‘‘
Determine the balance A for P dollars invested at rate r for t years, compounded n times per year.
51) P=$1000, r=3%, t=10 years
t
P
1
10
20
52) P=$2500, r=5%, t=40 years
30
continuous
t
P
9
1
10
20
30
continuous