Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Cell Structure and Function Table of Contents Discovering Cells Looking Inside Cells Chemical Compounds in Cells The Cell in Its Environment Cell Structure and Function What is a Cell? *A cell is the basic unit of life. *All life activities take place inside cells. Cell Structure and Function Discovery of Cells *Robert Hooke—first man to see cells (1663) -looked at thin slices of cork -saw empty boxes and called them cells -never realized that cells are living things Cell Structure and Function *Anton van Leeuwwenhoek -father of microbiology (1600’s) -improved and developed many types of microscopes -discovered microscopic, one celled organisms and called them “animalcules”, meaning “little animals”. Cell Structure and Function *Matthias Schleiden (1838) -stated all plants are made of cells *Theodor Schwann (1839) -stated all animals are made of cells Cell Structure and Function *Rudolph Virchow (1855) -stated all cells come from other cells. *The work of these men led to the “Cell Theory” Cell Structure and Function - Discovering Cells The cell theory states: 1. All living things are made of cells. 2. Cells are the basic units of structure and function in living things. 3. All cells come from other cells. Cell Structure and Function - Discovering Cells Links on Cell Theory Click the SciLinks button for links on the cell theory. Cell Structure and Function Eukaryotic vs. Prokaryotic *All cells are either eukaryotic or prokaryotic. -Eukaryotic cells —complex cells with a nucleus. All animal and plant cells are eukaryotic. -Prokaryotic cells—simple cells without a nucleus. All bacteria and cyanobacteria (blue-green bacteria) are prokaryotic. Cell Structure and Function Structure of Animal Cells Animal cells are typical eukaryotic cells. Most contain the following structures: *Cell Membrane -Surrounds the cell -Has pores -Controls what gets in and out Cell Structure and Function - Looking Inside Cells *Nucleus—control center of cell -directs all of the cell’s activities Chromatin Pores Nucleolus Nuclear Envelope Cell Structure and Function *Cytoplasm—gel-like material inside the cell. *Organelles—many tiny structures inside the cell. Each has its own job to do. -Organelles include: Cell Structure and Function - Looking Inside Cells 1.Mitochondria—“powerhouses” of the cell because they convert energy in food molecules to energy the cell can use to carry out its functions. Cell Structure and Function - Looking Inside Cells 2. Endoplasmic reticulum —folded tube like membranes that move materials throughout the cell. 3. Ribosomes—small protein factories found on the “er” or in the cytoplasm Ribosomes Endoplasmic reticulum Cell Structure and Function - Looking Inside Cells 4. Golgi bodies —packaging centers that wrap up and package proteins and send them to other parts of the cell or out of the cell. Golgi Body Cell Structure and Function 5. Lysosomes—garbage collectors that contain enzymes used to break down large molecules and old cell parts. Cell Structure and Function 6. Vacuoles—sacs that store water, dissolved material or waste products. They are larger in plant cells than in animal cells. Cell Structure and Function Structure of Plant Cells *Plant cells contain all the same structures and organelles as animal cells plus a few more. Plant cells can do everything that animal cells can do plus make food. Cell Structure and Function -Cell wall—a ridged structure outside the cell membrane made of cellulose. It supports and protects the plant cell. -Chloroplasts—tiny disks that contain chlorophyll. Photosynthesis takes place here. -Larger Vaculoes—to store water Cell Structure and Function - Looking Inside Cells Plant and Animal Cells Cell Structure and Function Cell Variety *Cells differ in size, shape, and function. They will not all look like the diagrams. Cell Structure and Function *Examples: -Nerve cell—0ne meter long with many extensions: carries impulses to the brain. -Red Blood Cell— microscopic, round and flexible: carries oxygen throughout the body. Cell Structure and Function Structure of Bacteria Cells *Bacteria cells have no nucleus and no membrane-bound organelles. -They are prokaryotic. -Their parts include: Capsule Cell wall Cell membrane Some have flagella Cytoplasm DNA floating in cytoplasm Ribosomes Cell Structure and Function Diagram of a Bacteria Cell Cytoplasm DNA Capsule Cell wall Cell Membrane Ribosomes Flagella Cell Structure and Function - Looking Inside Cells Plant and Animal Cells Activity Click the Active Art button to open a browser window and access Active Art about plant and animal cells. Cell Structure and Function - Looking Inside Cells Previewing Visuals Before you read, preview Figure 12. Then write two questions you have about the illustrations in a graphic organizer like the one below. As you read, answer your questions. Plant and Animal Cells Q. How are animal cells different from plant cells? A. Plants cells have a cell wall and chloroplasts, which animal cells to not have. Q. What do mitochondria do? A. Mitochondria convert energy in food molecules to energy the cell can use. Cell Structure and Function - Looking Inside Cells The Cytoplasm and Organelles Click the Video button to watch a movie about cytoplasm and organelles. Cell Structure and Function - Looking Inside Cells Specialized Cells Click the Video button to watch a movie about specialized cells. Cell Structure and Function End of Section: Looking Inside Cells Cell Structure and Function What are Cells Made Of? *Cell Chemistry begins with atoms: -Atom—basic units of matter -Elements—any substance that cannot be broken down into simpler substances (made of only one type of atom) Cell Structure and Function -All known elements are listed on the Periodic Table of the Elements Cell Structure and Function -The elements found in living cells include mostly carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur: (CHNOPS) Cell Structure and Function Molecules and Compounds *Atoms combine to form molecules. -Molecules—two or more atoms bonded together (different or same) Ex: H2O O2 NaCl -Special molecules made of different elements only are called compounds Ex: H2O CO2 Cell Structure and Function - Chemical Compounds in Cells Carbon dioxide, which is found in gas bubbles, is a chemical compound. So is water. Cell Structure and Function -When just the right molecules and compounds get together in just the right way, cells are formed. -Compounds in living organisms are classified as either organic or inorganic. Cell Structure and Function *Organic compounds contain the elements; carbon and hydrogen. *They make up foods and cell membranes. *Four basic groups: Cell Structure and Function 1.Carbohydrates—make up 1% of a cell; contain carbon, hydrogen, and oxygen; used for energy; examples are sugars and starches; most important carbohydrate for living things is glucose. Cell Structure and Function 2. Lipids—make up 10% of a cell; contain carbon, hydrogen and oxygen; store and release energy; found in cell membranes; examples are fats, oils and waxes. Cell Structure and Function 3. Proteins—make up 15% of a cell; made of amino acids that contain carbon, hydrogen, oxygen and nitrogen; used to build cell parts and for growth and repair of cell; examples are enzymes. Cell Structure and Function 4. Nucleic Acids—make up 4% of a cell; contain carbon, hydrogen, oxygen, nitrogen, and phosphorus; carry genetic information; found in chromosomes, mitochondria, chloroplasts, and nucleus; examples are DNA and RNA Cell Structure and Function - Chemical Compounds in Cells Compounds in Bacteria and Mammals All cells contain carbohydrates, lipids, proteins, and nucleic acids, as well as water and other inorganic compounds. But do all cells contain the same percentages of these compounds? The graph compares the percentage of some compounds found in a bacterial cell and a cell from a mammal. Cell Structure and Function - Chemical Compounds in Cells Compounds in Bacteria and Mammals Reading Graphs: What do the red bars represent? What do the blue bars represent? Red bars represent percentages of compounds in bacterial cells; blue bars represent percentages of compounds in mammalian cells. Cell Structure and Function - Chemical Compounds in Cells Compounds in Bacteria and Mammals Interpreting Data: What percentage of a mammalian cell is made up of water? How does this compare to the percentage of water in a bacterial cell? About 70%; the percentages are the same. Cell Structure and Function - Chemical Compounds in Cells Compounds in Bacteria and Mammals Interpreting Data: Which kind of compound– proteins or nucleic acids– makes up the larger percentage of a mammalian cell? Proteins Cell Structure and Function - Chemical Compounds in Cells Compounds in Bacteria and Mammals Drawing Conclusions: In general, how do a bacterial cell and mammalian cell compare in their chemical composition? They are similar, though mammalian cells have a lower percentage of nucleic acids, and bacterial cells have a lower percentage of lipids and fewer proteins. Cell Structure and Function - Chemical Compounds in Cells *Most inorganic compounds are made from elements other than carbon. Example: Water -water makes up two-thirds of your body -70% of a cell’s cytoplasm is water -many substances must be dissolved in water in order to be used by cells. Cell Structure and Function - Chemical Compounds in Cells Comparing and Contrasting As you read, compare and contrast carbohydrates, proteins, and lipids in a table like the one below. Type of Compound Carbohydrate Protein Lipid Elements Carbon, hydrogen, oxygen Carbon, hydrogen, oxygen, nitrogen, and sometimes sulfur Carbon, hydrogen, oxygen Functions Store and provide energy and make up cellular parts Make up much of the structure of cells and speed up chemical reactions Store energy Cell Structure and Function - Chemical Compounds in Cells Links on Proteins Click the SciLinks button for links on proteins. Cell Structure and Function Cell Transport *The cell membrane controls what gets in and out of the cell. This is called Cell Transport. -Substances pass through pores. -The membrane is selectively-permeable (meaning only molecules of a certain size can get through). Cell Structure and Function - The Cell in Its Environment A Selective Barrier The cell membrane protects the contents of the cell and helps control the materials that enter and leave. Cell Structure and Function Types of Transport *Passive Transport —cell uses no energy to move materials into or out of the cell. -Two types of Passive Transport: 1. Diffusion 2. Osmosis Cell Structure and Function *Diffusion is a type of passive transport in which molecules move from high to low concentration. -Oxygen and carbon dioxide move into a cell by diffusion. -Molecules move through tiny pores in the cell membrane. -Diffusion requires no energy from the cell. Cell Structure and Function Cell Structure and Function - The Cell in Its Environment Diffusion In diffusion, molecules move from an area of higher concentration to an area of lower concentration. Cell Structure and Function - The Cell in Its Environment Ratios The concentration of a solution can be expressed as a ratio. A ratio compares two numbers. It tells you how much you have of one item in comparison to another. For example, suppose you dissolve 5 g of sugar in 1 L of water. You can express the concentration of the solution in ratio form as 5 g:1 L, or 5 g/L. Practice Problem Suppose you dissolve 7 g of salt in 1 L of water. Express the concentration of the solution as a ratio. 7 g:1 L or 7 g/L Cell Structure and Function *Osmosis is a type of passive transport in which water moves from high to low concentration. -Plants get water into their roots by osmosis. -Osmosis also requires no energy from the cell. Cell Structure and Function Cell Structure and Function - The Cell in Its Environment Osmosis In osmosis, water diffuses through a selectively permeable membrane. Cell Structure and Function Equilibrium *Both diffusion and osmosis will continue until the cell reaches a point where the concentrations are equal both inside and outside the cell. This is called equilibrium. Cell Structure and Function *Active Transport —cell must use energy to move substances in or out. -Cell will move things from low to high concentration. -Transport proteins are needed. Cell Structure and Function - The Cell in Its Environment Passive and Active Transport Passive and active transport are two processes by which materials pass through the cell membrane. Active transport requires the cell to use its own energy, while passive transport does not. Cell Structure and Function Endocytosis— process used by cells to move very large substances into the cell. Cell Structure and Function Exocytosis —process used by cells to move very large substances out of the cell. Cell Structure and Function Cell Structure and Function - The Cell in Its Environment More on Cellular Transport Click the PHSchool.com button for an activity about cellular transport. Cell Structure and Function Graphic Organizer Organic Compounds types Carbohydrates Lipids Proteins Nucleic acids include include made of types Fats, oils, and waxes Amino acids Sugars Starches DNA RNA