* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Review - Liberty High School
Coriolis force wikipedia , lookup
Jerk (physics) wikipedia , lookup
Classical mechanics wikipedia , lookup
Equations of motion wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
N-body problem wikipedia , lookup
Seismometer wikipedia , lookup
Hunting oscillation wikipedia , lookup
Newton's theorem of revolving orbits wikipedia , lookup
Fictitious force wikipedia , lookup
Frictional contact mechanics wikipedia , lookup
Mass versus weight wikipedia , lookup
Centrifugal force wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Classical central-force problem wikipedia , lookup
Newton’s Laws What is Force? A push or pull on an object. Unbalanced forces cause an object to accelerate… To speed up To slow down To change direction Force is a vector! Types of Forces Contact forces: involve contact between bodies. Normal, Friction Field forces: act without necessity of contact. Gravity, Electromagnetic, Strong, Weak Question: Is there really any such thing as a contact force? Forces and Equilibrium If the net force on a body is zero, it is in equilibrium. An object in equilibrium may be moving relative to us (dynamic equilibrium). An object in equilibrium may appear to be at rest (static equilibrium). Galileo’s Thought Experiment Galileo’s Thought Experiment This thought experiment lead to Newton’s First Law. Newton’s First Law The Law of Inertia. A body in motion stays in motion in a straight line unless acted upon by an external force. This law is commonly applied to the horizontal component of velocity, which is assumed not to change during the flight of a projectile. Newton’s Second Law A body accelerates when acted upon by a net external force The acceleration is proportional to the net (or resultant) force and is in the direction which the net force acts. This law is commonly applied to the vertical component of velocity. SF = ma Newton’s Third Law For every action there exists an equal and opposite reaction. If A exerts a force F on B, then B exerts a force of -F on A. Commonly Confused Terms Inertia: or the resistance of an object to being accelerated Mass: the same thing as inertia (to a physicist). Weight: gravitational attraction inertia = mass weight Sample Problem – 1st Law Two forces, F1 = (4i – 6j + k) N and F2 = (i – 2j - 8k) N, act upon a body of mass 3.0 kg as it is moving at constant speed. What do you know must be true? Sample Problem – 2nd Law Two forces, F1 = (4i – 6j + k) N and F2 = (i – 2j - 8k) N, act upon a body of mass 3.0 kg. No other forces act upon the body at this time. What do you know must be true? Sample Problem – 3rd Law A tug-of-war team ties a rope to a tree and pulls hard horizontally to create a tension of 30,000 N in the rope. Suppose the team pulls equally hard when, instead of a tree, the other end of the rope is being pulled by another tug-of-war team such that no movement occurs. What is the tension in the rope in the second case? Working a nd 2 Law Problem Working Newton’s 2nd Law Problems is best accomplished in a systematic fashion. The more complicated the problem, the more important it is to have a general procedure to follow in working it. nd 2 Law Procedure 1. Identify the body to be analyzed. 2. Select a reference frame, stationary or moving, but not accelerating 3. Draw a force or free body diagram. 4. Set up ΣF = ma equations for each dimension. 5. Use kinematics or calculus where necessary to obtain acceleration. 6. Substitute known quantities. 7. Calculate the unknown quantities. Sample Problem A 5.00-g bullet leaves the muzzle of a rifle with a speed of 320 m/s. The bullet is accelerated by expanding gases while it travels down the 0.820 m long barrel. Assuming constant acceleration and negligible friction, what is the force on the bullet? Sample Problem A 3.00 kg mass undergoes an acceleration given by a = (2.50i + 4.10j) m/s2. Find the resultant force F and its magnitude. Normal force The force that keeps one object from invading another object. Our weight is the force of attraction of our body for the center of the planet. We don’t fall to the center of the planet. The normal force keeps us up. Normal Force on Flat surface Normal Force on Flat surface N mg N = mg for objects resting on horizontal surfaces. Ramp (frictionless) Ramp (frictionless) N = mgcos N mgsin mg The normal force is perpendicular to angled ramps as well. It’s usually equal to the component of weight perpendicular to the surface. mgcos Ramp (frictionless) What will acceleration be in this situation? N SF= ma mgsin = ma mgsin gsin = a N = mgcos mg mgcos Ramp (frictionless) N = mgcos N How could you keep the block from accelerating? T mgsin mg mgcos Tension A pulling force. Generally exists in a rope, string, or cable. Arises at the molecular level, when a rope, string, or cable resists being pulled apart. Tension (static 2D) The horizontal and vertical components of the tension are equal to zero if the system is not accelerating. 30o 45o 1 2 3 15 kg Tension (static 2D) The horizontal and vertical components of the tension are equal to zero if the system is not accelerating. 30o T3 mg 45o 1 2 3 15 kg SFx = T1 0 T2 SFy = T3 0 Tension (elevator) What about when an elevator is accelerating upward? M Tension (elevator) T M Mg What about when an elevator is accelerating upward? Tension (elevator) M What about when the elevator is moving at constant velocity between floors? Tension (elevator) T M Mg What about when the elevator is moving at constant velocity between floors? Tension (elevator) What about when the elevator is slowing at the top floor? M Tension (elevator) T M Mg What about when the elevator is slowing at the top floor? Tension (elevator) What about if the elevator cable breaks? M Tension (elevator) What about if the elevator cable breaks? M Mg Pulley problems Magic pulleys simply bend the coordinate system. m1 m2 Pulley problems Magic pulleys simply bend the coordinate system. N T T m1g -x m1 SF = ma m2g = (m1+m2)a m2g m2 x Pulley problems All problems should be started from a force diagram. m2 Pulley problems Tension is determined by examining one block SF2 = m2a or the other m2g - T = m2a T T N m1g m2 SF1 = m1a T-m1gsin = m1a m2g Atwood machine m2 m1 A device for measuring g. If m1 and m2 are nearly the same, slows down freefall such that acceleration can be measured. Then, g can be measured. Atwood machine T m2 T A device for measuring g. If m1 and m2 are nearly the same, slows down freefall such that acceleration can be measured. Then, g can be measured. m1 m1g m2g SF = ma m2g-m1g = (m2+m1)a Easy Problem How fast will the block be sliding at the bottom of the frictionless ramp? 5.0 kg 20o L = 12 m Easy Problem How high up the frictionless ramp will the block slide? v = 12.0 m/s 5.0 kg 20o Problem Describe accelerationModerate of the 5 kg block. Table and pulley are magic and frictionless. 1.0 kg 20o Friction Friction opposes a sliding motion. Static friction exists before sliding occurs (fs sN). Kinetic friction exists after sliding occurs fk = kN Friction on flat surfaces y y x Draw a free body diagram for a braking car. x Draw a free body diagram for a car accelerating from rest. Test this hypothesis Hypothesis: Static friction is, in general, greater than kinetic friction for the same two surfaces. In your lab groups, use a labquest and force sensor to prove or disprove this hypothesis. Calculate the coefficients of static and kinetic friction between the two surfaces you use in your experiment. When you have demonstrated success to me, plan your demonstration for next class. Friction on a ramp Sliding down Sliding up Friction is always parallel to surfaces…. A 1.00 kg book is held against a wall by pressing it against the wall with a force of 50.00 N. What must be the minimum coefficient of friction between the book and the wall, such that the book does not slide down the wall? f F N W (0.20) Problem #1 Assume a coefficient of static friction of 1.0 between tires and road. What is the minimum length of time it would take to accelerate a car from 0 to 60 mph? Problem #2 Assume a coefficient of static friction of 1.0 between tires and road and a coefficient of kinetic friction of 0.80 between tires and road. How far would a car travel after the driver applies the brakes if it skids to a stop? Centripetal Force Inwardly directed force which causes a body to turn; perpendicular to velocity. Centripetal force always arises from other forces, and is not a unique kind of force. Sources include gravity, friction, tension, electromagnetic, normal. ΣF = ma a = v2/r ΣF = m v2/r Highway Curves z R Friction turns the vehicle N r mg Normal force turns the vehicle Conical Pendulum z T = 2p L cos g L r T For conical pendulums, centripetal force is mg provided by a component of the tension. Sample problem • Find the minimum safe turning radius for a car traveling at 60 mph on a flat roadway, assuming a coefficient of static friction of 0.70. Sample problem • Derive the expression for the period of a conical pendulum with respect to the string length and radius of rotation. Sample problem • Derive the expression for the period best banking angle of a roadway given the radius of curvature and the likely speed of the vehicles. Non-uniform Circular Motion Consider circular motion in which either speed of the rotating object is changing, or the forces on the rotating object are changing. If the speed changes, there is a tangential as well as a centripetal component to the force. In some cases, the magnitude of the centripetal force changes as the circular motion occurs. Sample problem You swing a 0.25-kg rock in a vertical circle on a 0.80 m long rope at 2.0 Hz. What is the tension in the rope a) at the top and b) at the bottom of your swing? Sample problem A 40.0 kg child sits in a swing supported by 3.00 m long chains. If the tension in each chain at the lowest point is 350 N, find a) the child’s speed at the lowest point and b) the force exerted by the seat on the child at the lowest point. Sample problem A 900-kg automobile is traveling along a hilly road. If it is to remain with its wheels on the road, what is the maximum speed it can have as it tops a hill with a radius of curvature of 20.0 m?