* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 14 - - Simple Harmonic Motion
Newton's theorem of revolving orbits wikipedia , lookup
Velocity-addition formula wikipedia , lookup
Coriolis force wikipedia , lookup
Classical mechanics wikipedia , lookup
Specific impulse wikipedia , lookup
Brownian motion wikipedia , lookup
Center of mass wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Fictitious force wikipedia , lookup
Hunting oscillation wikipedia , lookup
Modified Newtonian dynamics wikipedia , lookup
Hooke's law wikipedia , lookup
Jerk (physics) wikipedia , lookup
Rigid body dynamics wikipedia , lookup
Equations of motion wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Classical central-force problem wikipedia , lookup
Chapter 14 - Simple Harmonic Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University © 2007 Photo by Mark Tippens A TRAMPOLINE exerts a restoring force on the jumper that is directly proportional to the average force required to displace the mat. Such restoring forces provide the driving forces necessary for objects that oscillate with simple harmonic motion. Objectives: After finishing this unit, you should be able to: • Write and apply Hooke’s Law for objects moving with simple harmonic motion. • Write and apply formulas for finding the frequency f, period T, velocity v, or acceleration a in terms of displacement x or time t. • Describe the motion of pendulums and calculate the length required to produce a given frequency. Periodic Motion Simple periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each position and velocity after a definite interval of time. 1 f T Amplitude A Period, Period Period,T, T,isisthe thetime time for forone onecomplete complete oscillation. oscillation.(seconds,s) (seconds,s) Frequency, Frequency Frequency,f,f,isisthe the number numberof ofcomplete complete oscillations oscillationsper per -1 second. second.Hertz Hertz(s(s-1)) Example 1: The suspended mass makes 30 complete oscillations in 15 s. What is the period and frequency of the motion? 15 s T 0.50 s 30 cylces x F Period: Period: TT == 0.500 0.500 ss 1 1 f T 0.500 s Frequency: Frequency: ff == 2.00 2.00 Hz Hz Simple Harmonic Motion, SHM Simple harmonic motion is periodic motion in the absence of friction and produced by a restoring force that is directly proportional to the displacement and oppositely directed. x F AA restoring restoring force, force, F, F, acts acts in in the the direction direction opposite opposite the the displacement displacement of of the the oscillating oscillating body. body. FF == -kx -kx Hooke’s Law When a spring is stretched, there is a restoring force that is proportional to the displacement. F = -kx x m F The spring constant k is a property of the spring given by: k= F x Work Done in Stretching a Spring Work done ON the spring is positive; work BY spring is negative. x From Hooke’s law the force F is: F (x) = kx F F m To stretch spring from x1 to x2 , work is: Work ½ kx ½ kx 2 2 x1 x2 2 1 (Review module on work) Example 2: A 4-kg mass suspended from a spring produces a displacement of 20 cm. What is the spring constant? The stretching force is the weight (W = mg) of the 4-kg mass: 20 cm F = (4 kg)(9.8 m/s2) = 39.2 N F m Now, from Hooke’s law, the force constant k of the spring is: k= F x = 0.2 m kk == 196 196 N/m N/m Example 2(cont.: The mass m is now stretched a distance of 8 cm and held. What is the potential energy? (k = 196 N/m) The potential energy is equal to the work done in stretching the spring: Work ½ kx ½ kx 2 2 8 cm 0 m 2 1 U ½ kx ½(196 N/m)(0.08 m) 2 UU == 0.627 0.627 JJ F 2 Displacement in SHM x m x = -A x=0 x = +A • Displacement is positive when the position is to the right of the equilibrium position (x = 0) and negative when located to the left. • The maximum displacement is called the amplitude A. Velocity in SHM v (- ) v (+) m x = -A x=0 x = +A • Velocity is positive when moving to the right and negative when moving to the left. • It is zero at the end points and a maximum at the midpoint in either direction (+ or -). Acceleration in SHM +a -x +x -a m x = -A x=0 x = +A • Acceleration is in the direction of the restoring force. (a is positive when x is negative, and negative when x is positive.) F ma kx • Acceleration is a maximum at the end points and it is zero at the center of oscillation. Acceleration vs. Displacement a v x m x = -A x=0 x = +A Given the spring constant, the displacement, and the mass, the acceleration can be found from: F ma kx or kx a m Note: Acceleration is always opposite to displacement. Example 3: A 2-kg mass hangs at the end of a spring whose constant is k = 400 N/m. The mass is displaced a distance of 12 cm and released. What is the acceleration at the instant the displacement is x = +7 cm? kx a m (400 N/m)(+0.07 m) a 2 kg 22 aa == -14.0 m/s -14.0 m/s a m Note: When the displacement is +7 cm (downward), the acceleration is -14.0 m/s2 (upward) independent of motion direction. +x Example 4: What is the maximum acceleration for the 2-kg mass in the previous problem? (A = 12 cm, k = 400 N/m) The maximum acceleration occurs when the restoring force is a maximum; i.e., when the stretch or compression of the spring is largest. F = ma = -kx xmax = A kA 400 N( 0.12 m) a 2 kg m Maximum Acceleration: m 22 aamax = ± 24.0 m/s max = ± 24.0 m/s +x Conservation of Energy The total mechanical energy (U + K) of a vibrating system is constant; i.e., it is the same at any point in the oscillating path. a v x m x = -A x=0 x = +A For any two points A and B, we may write: 22 + ½kx 22 = ½mv 22 + ½kx 22 ½mv ½mvAA + ½kxAA = ½mvBB + ½kxBB Energy of a Vibrating System: A x a v m x = -A x=0 B x = +A • At points A and B, the velocity is zero and the acceleration is a maximum. The total energy is: U + K = ½kA2 x = A and v = 0. • At any other point: U + K = ½mv2 + ½kx2 Velocity as Function of Position. x a v m x = -A 1 2 x=0 mv kx kA 2 1 2 2 1 2 vmax when x = 0: x = +A v 2 v k A m k A2 x 2 m Example 5: A 2-kg mass hangs at the end of a spring whose constant is k = 800 N/m. The mass is displaced a distance of 10 cm and released. What is the velocity at the instant the displacement is x = +6 cm? ½mv2 + ½kx 2 = ½kA2 v k m A2 x 2 800 N/m v (0.1 m) 2 (0.06 m) 2 2 kg vv == ±1.60 ±1.60 m/s m/s m +x Example 5 (Cont.): What is the maximum velocity for the previous problem? (A = 10 cm, k = 800 N/m, m = 2 kg.) The velocity is maximum when x = 0: 0 ½mv2 + ½kx 2 = ½kA2 v k 800 N/m A (0.1 m) m 2 kg vv == ±± 2.00 2.00 m/s m/s m +x The Reference Circle The reference circle compares the circular motion of an object with its horizontal projection. x Acos t x A cos(2 ft ) x = Horizontal displacement. A = Amplitude (xmax). = Reference angle. 2f Velocity in SHM The velocity (v) of an oscillating body at any instant is the horizontal component of its tangential velocity (vT). vT = R = A; 2f v = -vT sin ; = t v = - A sin t vv == -2f -2f AA sin sin 2f 2f tt Acceleration Reference Circle The acceleration (a) of an oscillating body at any instant is the horizontal component of its centripetal acceleration (ac). a = -ac cos = -ac cos(t) v2 2 R2 ; ac 2 R ac R R a = -cos(t) R=A a 4 2 f 2 A cos(2 ft ) a 4 f x 2 2 The Period and Frequency as a Function of a and x. For any body undergoing simple harmonic motion: Since a = -4f2x 1 f 2 a x and T = 1/f x T 2 a The The frequency frequency and and the the period period can can be be found found ifif the the displacement displacement and and acceleration acceleration are are known. known. Note Note that that the the signs signs of of aa and and xx will will always always be be opposite. opposite. Period and Frequency as a Function of Mass and Spring Constant. For a vibrating body with an elastic restoring force: Recall that F = ma = -kx: kx 1 f 2 k m m T 2 k The The frequency frequency ff and and the the period period TT can can be be found found ifif the the spring spring constant constant kk and and mass mass m m of of the the vibrating vibrating body body are are known. known. Use Use consistent consistent SI SI units. units. Example 6: The frictionless system shown below has a 2-kg mass attached to a spring (k = 400 N/m). The mass is displaced a distance of 20 cm to the right and released. What is the frequency of the motion? x a v m x = -0.2 m 1 f 2 x=0 k 1 m 2 x = +0.2 m 400 N/m 2 kg ff == 2.25 2.25 Hz Hz Example 6 (Cont.): Suppose the 2-kg mass of the previous problem is displaced 20 cm and released (k = 400 N/m). What is the maximum acceleration? (f = 2.25 Hz) x a v m x=0 x = -0.2 m x = +0.2 m Acceleration is a maximum when x = A a 4 f x 4 (2.25 Hz) (0.2 m) 2 2 2 22 aa == 40 m/s 40 m/s 2 Example 6: The 2-kg mass of the previous example is displaced initially at x = 20 cm and released. What is the velocity 2.69 s after release? (Recall that f = 2.25 Hz.) x a v m vv == -2f -2f AA sin sin 2f 2f tt x = -0.2 m x = 0 x = +0.2 m v 2 (2.25 Hz)(0.2 m) sin 2 (2.25 Hz)(2.69 s) (Note: in rads) v 2 (2.25 Hz)(0.2 m)(0.324) vv == -0.916 -0.916 m/s m/s The minus sign means it is moving to the left. Example 7: At what time will the 2-kg mass be located 12 cm to the left of x = 0? (A = 20 cm, f = 2.25 Hz) -0.12 m x a v m x A cos(2 ft ) x = -0.2 m x = 0 x 0.12 m cos(2 ft ) ; A 0.20 m 2 ft 2.214 rad; x = +0.2 m (2 ft ) cos 1 (0.60) 2.214 rad t 2 (2.25 Hz) tt == 0.157 0.157 ss The Simple Pendulum The period of a simple pendulum is given by: L T 2 g L For small angles 1 f 2 g L mg Example 8. What must be the length of a simple pendulum for a clock which has a period of two seconds (tick-tock)? L T 2 g 2 2 L ; T 4 g (2 s) 2 (9.8 m/s 2 ) L 2 4 L T 2g L= 2 4 L = 0.993 m The Torsion Pendulum The period T of a torsion pendulum is given by: I T 2 k' Where Where k’k’ isis aa torsion torsion constant constant that that depends depends on on the the material material from from which which the the rod rod isis made; made; II isis the the rotational rotational inertia inertia of of the the vibrating vibrating system. system. Example 9: A 160 g solid disk is attached to the end of a wire, then twisted at 0.8 rad and released. The torsion constant k’ is 0.025 N m/rad. Find the period. (Neglect the torsion in the wire) For Disk: Disk I = ½mR2 I = ½(0.16 kg)(0.12 m)2 = 0.00115 kg m2 I 0.00115 kg m 2 2 T 2 k' 0.025 N m/rad TT == 1.35 1.35 ss Note: Period is independent of angular displacement. Summary Simple Simple harmonic harmonic motion motion (SHM) (SHM) isis that that motion motion in in which which aa body body moves moves back back and and forth forth over over aa fixed fixed path, path, returning returning to to each each position position and and velocity velocity after after aa definite definite interval interval of of time. time. The The frequency frequency (rev/s) (rev/s) isis the the reciprocal reciprocal of of the the period period (time (time for for one one revolution). revolution). x m F 1 f T Summary (Cont.) Hooke’s Hooke’s Law: Law: In In aa spring, spring, there there isis aa restoring restoring force force that that isis proportional proportional to to the the displacement. displacement. F kx x The spring constant k is defined by: m F F k x Summary (SHM) x a v m x = -A x=0 F ma kx x = +A kx a m Conservation of Energy: 22 + ½kx 22 = ½mv 22 + ½kx 22 ½mv ½mvAA + ½kxAA = ½mvBB + ½kxBB Summary (SHM) 1 2 v mv kx kA 2 k A2 x 2 m k A m 2 1 2 x A cos(2 ft ) 2 1 2 v0 a 4 f x 2 v 2 fA sin(2 ft ) 2 Summary: Period and Frequency for Vibrating Spring. a v x m x = -A x=0 x = +A 1 f 2 a x x T 2 a 1 f 2 k m m T 2 k Summary: Simple Pendulum and Torsion Pendulum 1 f 2 g L I T 2 k' L L T 2 g CONCLUSION: Chapter 14 Simple Harmonic Motion