* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Left Atrial Functional Reserve in Patients With Nonischemic Dilated
Remote ischemic conditioning wikipedia , lookup
Heart failure wikipedia , lookup
Electrocardiography wikipedia , lookup
Management of acute coronary syndrome wikipedia , lookup
Cardiac surgery wikipedia , lookup
Hypertrophic cardiomyopathy wikipedia , lookup
Lutembacher's syndrome wikipedia , lookup
Cardiac contractility modulation wikipedia , lookup
Mitral insufficiency wikipedia , lookup
Arrhythmogenic right ventricular dysplasia wikipedia , lookup
Atrial septal defect wikipedia , lookup
Dextro-Transposition of the great arteries wikipedia , lookup
Left Atrial Functional Reserve in Patients With Nonischemic Dilated Cardiomyopathy* An Echocardiographic Dobutamine Study Ioannis A. Paraskevaidis, MD; Thomas Dodouras, MD; Stamatis Adamopoulos, MD; and Dimitrios Th. Kremastinos, MD Objective: To evaluate left atrial functional reserve in patients with chronic heart failure and nonischemic dilated cardiomyopathy (DCM). Background: Left ventricular functional status has been investigated using echocardiographic dobutamine. Methods: In 35 consecutive patients (29 men and 6 women; mean ⴞ SD age, 42.37 ⴞ 13.5 years), peak oxygen consumption (V̇O2max) was measured; the day after, a low-dose dobutamine (5 to 10 g/kg/min, of 5 min each step) study was performed. Left atrial volumes at mitral valve opening, onset of left atrial systole, and mitral valve closure were measured by using two-dimensional echocardiography. Left atrial active emptying volume (LAEV) [volume at onset of atrial systole ⴚ minimal volume] was calculated, as was left atrial active emptying fraction (LAEF): [(volume at onset of atrial systole ⴚ minimal volume)/volume at onset of atrial systole] ⴛ 100. The changes (values obtained after inotropic stimulation minus those obtained at baseline) of the above-mentioned echocardiographic variables were considered as left atrial functional reserve. Results: In the entire study group after dobutamine infusion, increases in LAEV (3.34 ⴞ 7.54 mL, p ⴝ 0.01) and LAEF (6 ⴞ 13.2%, p ⴝ 0.01) were observed. The changes in the above-mentioned parameters were correlated with V̇O2max values (r ⴝ 0.73 and r ⴝ 0.71, respectively; p < 0.001). After inotropic stimulation, LAEV and LAEF were increased in patients with V̇O2max values > 14 mL/kg/min (5.62 ⴞ 7.28 mL and 10.04 ⴞ 13.13%, respectively) and decreased in patients with V̇O2max values < 14 mL/kg/min (ⴚ 1.08 ⴞ 6.13 mL and ⴚ 1.6 ⴞ 9.9%, respectively; p ⴝ 0.01 for both). Conclusion: Echocardiographic dobutamine can evaluate left atrial functional reserve in patients with nonischemic DCM. (CHEST 2002; 122:1340 –1347) Key words: dilated cardiomyopathy; echocardiographic dobutamine; heart failure; left atrial functional reserve Abbreviations: DCM ⫽ dilated cardiomyopathy; LAEF ⫽ left atrial active emptying fraction; LAEV ⫽ left atrial active emptying volume; LAVmax ⫽ left atrial maximal volume at the point of mitral valve opening; LAVmin ⫽ minimal volume at the point of mitral valve closure; LAVp ⫽ left atrial volume at onset of atrial systole; LVEDD ⫽ left ventricular end-diastolic diameter; LVEF ⫽ left ventricular ejection fraction; LVESD ⫽ left ventricular end-systolic diameter; LVFS ⫽ left ventricular fractional shortening; NS ⫽ not significant; V̇o2max ⫽ peak oxygen consumption the mechanical characteristics of the left A lthough ventricle have been extensively studied, left atrial function is poorly understood despite its key role in optimizing left ventricular function.1,2 In physiologic investigations, the evaluation of pressure/dimension relationship is the most accurate and representative *From the Second Department of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece. Manuscript received November 12, 2001; revision accepted April 16, 2002. Correspondence to: Ioannis A. Paraskevaidis, MD, Onassis Cardiac Surgery Center, Second Department of Cardiology, 356 Syngrou Ave, 176 74 Athens, Greece; e-mail: elbee@ath. forthnet.gr index of the hemodynamic conditions that exist in cardiac chambers.3,4 However, these relationships require combined measurement of left atrial chamber pressures and dimensions. Thus, their use has been primarily limited to invasive clinical and experimental studies. Impaired exercise tolerance is one of the most common clinical manifestations in patients with left ventricular dysfunction.5 Left atrial fractional shortening at rest reflects left ventricular filling during exercise and therefore predicts cardiac output and stroke volume response to exercise, and exercise capacity.6 Exercise and left ventricular performance 1340 Downloaded From: http://publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/21983/ on 05/06/2017 Clinical Investigations during exercise have been shown to be mainly dependent on left ventricular diastolic filling rather than systolic function.6 Of note, it has been reported that indexes of left atrial function are related to peak aerobic capacity in patients with congestive heart failure.7 However, none of the above-mentioned studies have investigated left atrial response during exercise. We have shown that left ventricular changes induced by dobutamine infusion are well correlated with peak oxygen consumption (V̇o2max) and can be used to evaluate the functional status of heart failure.8,9 In this respect, we aimed to investigate left atrial functional reserve in patients with chronic heart failure and nonischemic dilated cardiomyopathy (DCM) using echocardiographic dobutamine. Materials and Methods Study Patients Thirty-six consecutive patients with documented DCM were studied. V̇o2max was calculated the day before the echocardiographic dobutamine study. Thirty-five patients (98%; 26 men and 9 women; mean ⫾ SD age, 42.37 ⫾ 13.5 years) with good-quality two-dimensional echocardiography were recruited for analysis. The cause of DCM was idiopathic in all patients assessed by a detailed history and clinical examination, echocardiography, coronary angiography (angiographic lesions ⬍ 30% lumen stenosis diameter), and biopsy. All patients were in New York Heart Association functional class III. Diagnosis of DCM was based on the echocardiographic findings of a dilated left ventricle (left ventricular end-diastolic diameter [LVEDD] ⬎ 60 mm) with severely affected systolic function, left ventricular fractional shortening [LVFS] ⬍ 20%, and left ventricular ejection fraction [LVEF] ⬍ 35%. In no case was a significant regional wall motion abnormality recorded by two-dimensional echocardiography. All patients were in sinus rhythm and were receiving digoxin, angiotensin-converting enzyme inhibitors, and diuretic drugs in adequate doses. No patients received -blocker therapy because when our study started this treatment had not yet become an established standard. Patients with rhythm disturbances, ischemic cardiomyopathy, more-than-mild valvular heart disease, or regional wall motion abnormalities were excluded. More specifically, patients with more-than-mild mitral regurgitation were excluded from the study to avoid confounding echocardiographic volumetric measurements. Transthoracic echocardiography was performed, and the echocardiographic variables were measured at baseline and after dobutamine infusion. In an additional 15 subjects (mean age, 34.7 ⫾ 6.3 years) with normal left ventricular size and function, and normal left atrial size, an echocardiographic dobutamine study was performed. All patients gave informed consent. Echocardiography In all patients, the ultrasound transducer was positioned at the point of maximal cardiac impulse and angled toward the right shoulder until an image was obtained that included all four cardiac chambers and both mitral and tricuspid valves. Thereafter, the transducer was angled to obtained the maximal left atrial and ventricular size while recording portions of both www.chestjournal.org atrioventricular valves. In the apical two-chamber view, the aortic valve and aorta were included when outlining the left atrial cavity. In addition, at least 80% of endocardium had to be seen and the difference in measurements of the left atrial common axis shared by both apical four-chamber and two-chamber views had to be ⱕ 3 mm. Following this, digital tracing (Sonos 1000 or 2500; Hewlett-Packard; Andover, MA) was used and left atrial volumes were measured from apical four-chamber and two-chamber views. The volume determinations were calculated according to method of Dodge et al,10 using a biplane area-length formula: V ⫽ 8A1 ⫻ A2/3L, where A1 and A2 represent the enclosed area of the atrial chamber from two orthogonal views, respectively, and L is the common axis shared and directed from apex to base. The following measurements were made at baseline and after the end of 10 g/kg/min of dobutamine infusion: (1) left atrial maximal volume at the point of mitral valve opening (LAVmax), and minimal volume at the point of mitral valve closure (LAVmin). Left atrial volume at onset of atrial systole (LAVp) was considered the volume corresponding to the onset of the P wave in the simultaneous recorded ECG. (2) Left atrial function was evaluated with the left atrial active emptying volume (LAEV) [volume at onset of atrial systole ⫺ minimal volume], and with the left atrial active emptying fraction (LAEF): [(volume at onset of atrial systole ⫺ minimal volume)/ volume at onset of atrial systole] ⫻ 100. Total atrial reservoir function was determined by measuring left atrial maximal volume minus minimal volume. (3) From the parasternal long-axis view and according to American Society of Echocardiography,11 LVEDD, left ventricular end-systolic diameter (LVESD), and LVFS (LVEDD ⫺ LVESD/LVEDD ⫻ 100) were calculated. LVEF was measured by using the modified Simpson rule. The changes of the above-mentioned parameters after dobutamine infusion were considered as indexes of left atrial functional reserve. Changes represent values obtained after dobutamine infusion minus those obtained at baseline. All measurements represent the average of the measurements of five consecutive beats. In all cases, echocardiograms were analyzed by two independent expert observers. In cases of discrepancy, the average was calculated and the mean value was reported. Dobutamine Infusion Dobutamine was infused IV in two steps after establishment of a stable hemodynamic state for each step (heart rate, BP). The duration of each step was 5 min, and the maximal end-dose of dobutamine infused was 10 g/kg/min.12 At each step, dobutamine infusion was increased by 5 g/kg/min, reaching 10 g/kg/min at the second step. Every minute during the protocol, systolic, diastolic, and hence mean arterial BP (Sirecust 888; Siemens; Erlangen, Germany), heart rate and a 12-lead ECG were recorded. Cardiopulmonary Exercise Testing Exercise testing with respiratory gas exchange measurements was performed while patients exercised on a treadmill according to the Dargie protocol.13 Oxygen consumption, carbon dioxide production, and respiratory exchange ratio were measured continuously during exercise using an automated gas exchange measuring system (CPX/MAX; Medgraphics; Minneapolis, MN). BP was measured with a mercury sphygmomanometer, and the ECG was monitored continuously with a computer-assisted system (Marquette Electronics; Milwaukee, WI). V̇o2max at peak exercise was calculated as the mean of values during the last minute of exercise. CHEST / 122 / 4 / OCTOBER, 2002 Downloaded From: http://publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/21983/ on 05/06/2017 1341 Statistical Analysis All values are expressed as mean ⫾ 1 SD. A paired t test was applied to compare variables between groups before and after dobutamine infusion. An unpaired t test was applied to compare variables between different groups. Correlation analysis (linear regression analysis) was used in order to evaluate the relations between V̇o2max values and the echocardiographic parameters. Reproducibility (interobserver and intraobserver variability) of our laboratory have been reported previously.8,9 A p value ⬍ 0.05 was considered statistically significant. Results No major side effects were reported during dobutamine infusion. The V̇o2max measured in all patients ranged from 10 to 21.8 mL/kg/min (mean, 15 ⫾ 2.9 mL/kg/min). Echocardiographic Measurements The echocardiographic measurements of the normal group and the heart failure group at baseline and after dobutamine infusion and their changes are shown in Table 1. Systolic BP was unchanged after low-dose dobutamine infusion (from 112.1 ⫾ 10.9 to 113.1 ⫾ 8.7 mm Hg), whereas R-R interval was significantly decreased (from 759.4 ⫾ 50.6 to 732.3 ⫾ 57 ms, p ⫽ 0.01). After dobutamine infusion, statistically significant decreases in LAVp and in LAVmin (both p ⬍ 0.001) were recorded, while LAEV and LAEF were significantly increased (both p ⬍ 0.01). LVEDD was unchanged after dobutamine infusion, whereas LVESD was significantly decreased (⫺ 4.4 ⫾ 4.7 mm, p ⫽ 0.0001) after inotropic stimulation. LVFS and LVEF were significantly increased: 6.7 ⫾ 7.3% (p ⫽ 0.0002) and 5.8 ⫾ 3.6% (p ⫽ 0.0001), respectively. The changes in LAEV (r ⫽ 0.73, p ⫽ 0.001), LAEF (r ⫽ 0.71, p ⫽ 0.001), LAVmin (r ⫽ ⫺ 0.66, p ⫽ 0.001) and LVESD (r ⫽ 0.79, p ⫽ 0.001) were highly correlated with V̇o2max values (Fig 1). At baseline, left ventricular inflow pattern presented an E-wave velocity of 62.3 ⫾ 9.3 cm/s and an A-wave velocity of 42.1 ⫾ 13.9 cm/s. The ratio between the early peak transmitral flow velocity and the late peak velocity (1.6 ⫾ 0.7) was correlated with V̇o2max (r ⫽ ⫺0.56, p ⬍ 0.001) and with the dobutamine-induced changes in LAEV (r ⫽ ⫺ 0.50, p ⬍ 0.001) and in LAEF (r ⫽ ⫺ 0.54, p ⬍ 0.001). Pulmonary artery systolic pressure measured at baseline (40.2 ⫾ 4.6 mm Hg) was not significantly correlated with exercise capacity and with left atrial functional reserve. Pulmonary artery systolic pressure was calculated by using the following formula: 4 ⫻ tricuspid regurgitation peak velocity2 ⫹ 10 mm Hg. Atrial response to dobutamine in patients with high vs low V̇o2max. The heart failure group was further divided in two groups: group 1 (n ⫽ 23) comprised patients with V̇o2max values ⬎ 14 mL/kg/min Table 1—Echocardiographic Measurements Before and After Dobutamine Infusion in the Heart Failure Group (n ⴝ 35) and in Normal Subjects (n ⴝ 15)* Variables Heart failure group LAVmax, mL LAVp, mL LAVmin, mL LAEV, mL LAEF, % LAVmax-min, mL LVEDD, mm LVESD, mm LVFS, % LVEF, % Normal subjects LAVmax, mL LAVp, mL LAVmin, mL LAEV, mL LAEF, % LAVmax-min, mL Before After Change† p Value 67.4 ⫾ 16 59.1 ⫾ 13.3 53.6 ⫾ 12.3 5.5 ⫾ 5.8 8.8 ⫾ 10.5 13.2 ⫾ 11.5 73.3 ⫾ 10.1 63.6 ⫾ 10.7 13.4 ⫾ 3.8 27.5 ⫾ 3.9 66.9 ⫾ 16.5 56.7 ⫾ 11.6 47.8 ⫾ 9.8 8.8 ⫾ 7.7 14.8 ⫾ 11.6 18.2 ⫾ 12.7 73.8 ⫾ 10.1 59.2 ⫾ 11.4 20.1 ⫾ 7.7 33.3 ⫾ 3.8 ⫺0.5 ⫾ 4.9 ⫺2.5 ⫾ 4.2 ⫺5.8 ⫾ 7.2 3.3 ⫾ 7.5 6 ⫾ 13.2 5 ⫾ 8.3 0.5 ⫾ 3.1 ⫺4.4 ⫾ 4.7 6.7 ⫾ 7.3 5.8 ⫾ 3.6 NS 0.001 0.001 0.01 0.01 0.001 NS 0.0001 0.0001 0.0001 56.6 ⫾ 1.3 47.4 ⫾ 6.6 42.7 ⫾ 7.3 4.7 ⫾ 3.1 10.1 ⫾ 6.3 13.9 ⫾ 4.1 53.8 ⫾ 5.7 41.1 ⫾ 6.7 25.8 ⫾ 2.7 15.3 ⫾ 6.7 35.9 ⫾ 10.8 28 ⫾ 6.1 ⫺2.8 ⫾ 2.2‡ ⫺6.3 ⫾ 3.6§ ⫺16.9 ⫾ 7.7㛳 10.6 ⫾ 8.1§ 25.8 ⫾ 14.1㛳 14.1 ⫾ 7.5㛳 0.001 0.001 0.001 0.001 0.001 0.001 *LAVmax-min ⫽ LVAmax minus LVAmin. †Values obtained after inotropic stimulation min values obtained at baseline. ‡p ⬍ 0.05 for the relation between dobutamine-induced changes in normal subjects and in patients with DCM. §p ⬍ 0.01 for the relation between dobutamine-induced changes in normal subjects and in patients with DCM. 㛳P ⬍ 0.001 for the relation between dobutamine-induced changes in normal subjects and in patients with DCM. 1342 Downloaded From: http://publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/21983/ on 05/06/2017 Clinical Investigations Figure 1. Correlation between V̇o2max values and LAEV (upper panel) and LAEF (lower panel). Changes represent values after dobutamine infusion minus those observed at baseline. (mean, 16.6 ⫾ 2.1 mL/kg/min), and group 2 patients (n ⫽ 12) had V̇o2max values ⬍ 14 mL/kg/min (mean, 12 ⫾ 1.2 mL/kg/min). The values of the echocardiographic variables of each group both before and after inotropic stimulation as well as their changes are shown in Table 2. Systolic BP was similarly increased in both groups (1 ⫾ 8.3 mm Hg for group 1 and 0.8 ⫾ 7.6 mm Hg for group 2). R-R interval was similarly decreased in both groups (⫺ 23.4 ⫾ 53.4 ms for group 1 and ⫺ 34.2 ⫾ 59.4 ms for group 2). Dobutamine-induced changes in LAVp were similar between groups. In contrast, LAVmin, although similar at baseline, was decreased more in group 1 (⫺ 7.5 ⫾ 7.7 mL) than in group 2 (⫺ 2.6 ⫾ 5 mL) [p ⫽ 0.02]. However, LAEV and LAEF, although similar at baseline, after dobutamine infusion were increased in group 1 (5.6 ⫾ 7.3 mL and 10 ⫾ 13.1%, respectively) and decreased in group 2 (⫺ 1.1 ⫾ 6.1 mL and ⫺ 1.6 ⫾ 9.9%, respectively) [p ⫽ 0.01 for both]. The changes in LVEDD were similar before and after dobutamine infusion, while LVESD was decreased in group 1 (⫺ 7.1 ⫾ 2.7 mm) and increased in group 2 (0.7 ⫾ 3.5 mm) [p ⫽ 0.0001]. LVFS and LVEF were increased more in group 1 (9.9 ⫾ 5.5% and 7.1 ⫾ 2.6%, respectively; p ⫽ 0.001 for both) than in group 2 (0.4 ⫾ 6.1% and 3.4 ⫾ 4.2%, respectively). Table 2—Echocardiographic Measurements Before and After Dobutamine Infusion in Patients With V̇O2max > 14 mL/kg/min (Group 1, n ⴝ 23) and in Patients With V̇O2max < 14 mL/kg/min (Group 2, n ⴝ 12)* Variables Group 1 LAVmax, mL LAVp, mL LAVmin, mL LAEV, mL LAEF, % LAVmax-min, mL LVEDD, mm LVESD, mm LVFS, % LVEF, % Group 2 LAVmax, mL LAVp, mL LAVmin, mL LAEV, mL LAEF, % LAVmax-min, mL LVEDD, mm LVESD, mm LVFS, % LVEF, % Before After Change† p Value 64.9 ⫾ 17.3 56.6 ⫾ 14 50.9 ⫾ 12.4 5.6 ⫾ 5.9 9.2 ⫾ 11.2 14 ⫾ 12.6 72 ⫾ 8.5 62.6 ⫾ 9 13.5 ⫾ 3.6 27.5 ⫾ 4.1 63.6 ⫾ 17.7 54.7 ⫾ 12.5 43.4 ⫾ 8.1 11.3 ⫾ 7.9 19.2 ⫾ 11 20.3 ⫾ 13.9 71.9 ⫾ 7.7 55.3 ⫾ 9.6 23.4 ⫾ 6.4 34.6 ⫾ 3.6 ⫺1.3 ⫾ 4.7 ⫺1.9 ⫾ 3.8 ⫺7.5 ⫾ 7.7 5.6 ⫾ 7.3 10 ⫾ 13.1 6.2 ⫾ 8.8 ⫺0.08 ⫾ 3.1 ⫺7.1 ⫾ 2.7 9.9 ⫾ 5.5 7.1 ⫾ 2.6 NS 0.02 0.001 0.001 0.001 0.002 NS 0.0001 0.0001 0.0001 72.2 ⫾ 12.2 64.1 ⫾ 10.8 58.8 ⫾ 10.7 5.2 ⫾ 5.8 8 ⫾ 9.5 13.3 ⫾ 9.2 75.7 ⫾ 12.6 65.9 ⫾ 13.5 13.4 ⫾ 4.5 27.4 ⫾ 3.6 73.2 ⫾ 12.2 60.4 ⫾ 9.2 56.2 ⫾ 6.8 4.2 ⫾ 4.7 6.3 ⫾ 7.2 17 ⫾ 9.9 77.4 ⫾ 13.3 66.6 ⫾ 11.4 13.8 ⫾ 5.9 30.8 ⫾ 2.9 1.1 ⫾ 5.1 ⫺3.7 ⫾ 4.9 ⫺2.6 ⫾ 5 ⫺1.1 ⫾ 6.1 ⫺1.6 ⫾ 9.9 3.7 ⫾ 7.4 1.7 ⫾ 2.8 0.7 ⫾ 3.5 0.4 ⫾ 6.1 3.4 ⫾ 4.2 NS 0.03 NS NS NS NS NS NS NS 0.02 *See Table 1 for expansion of abbreviation. †Values obtained after inotropic stimulation minus those obtained at baseline. www.chestjournal.org CHEST / 122 / 4 / OCTOBER, 2002 Downloaded From: http://publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/21983/ on 05/06/2017 1343 Of note, plotting the variables V̇o2max vs the changes in LAEV and LAEF (Fig 2), we can make the following observations. Firstly, the trend line of the above-mentioned variables cuts the x-axis near the value 13 mL/kg/min for V̇o2max, indicating that we may expect an improvement in atrial contractile reserve even for values of V̇o2max ⬍ 14 mL/kg/min. Secondly, dobutamine-induced changes in the abovementioned variables that correspond to the range of 10 to 14 mL/kg/min of V̇o2max fall very near to the zero line, and some of them are even positive or negative, expressing an improvement in atrial contractile reserve. At baseline, mitral E-wave velocity and pulmonary systolic pressure were similar between groups (62.4 ⫾ 9.3 cm/s and 40.1 ⫾ 5.1 mm Hg for group 1 and 62.1 ⫾ 9.9 cm/s and 40.4 ⫾ 4 mm Hg for group 2, respectively; p ⫽ not significant [NS]). However, mitral A wave was higher in group 1 (46.5 ⫾ 14.1 cm/s) than in group 2 (33.7 ⫾ 9.3 cm/s), p ⬍ 0.01. The ratio between the early peak transmitral flow velocity and the late peak systolic velocity was of borderline significance (p ⫽ 0.07), higher in group 2 (1.9 ⫾ 0.6) than in group 1 (1.5 ⫾ 0.6). Atrial Response to Dobutamine in Patients With V̇O2max Values ⬎ 14 mL/kg/min Since in the above-mentioned groups there was a statistically significant change both in left ventricular and left atrium functional reserve, to further investigate the role of left atrial functional status we divided group 1 in two subgroups according to median value of V̇o2max (15.8 mL/kg/min). Group 1a represents patients (n ⫽ 12) with V̇o2max values above (18.2 ⫾ 1.7 mL/kg/min) the V̇o2max median value, and group 1b represents patients (n ⫽ 11) with V̇o2max values below (14.9 ⫾ 0.2 mL/kg/min) the V̇o2max median value. Interestingly, the dobutamine induced changes in LVEDD (0.2 ⫾ 3.1 mm for subgroup 1a and ⫺ 0.4 ⫾ 3.2 mm for subgroup 1b, p ⫽ NS), LVESD (⫺ 7.9 ⫾ 3 mm for subgroup 1a and ⫺ 6.2 ⫾ 2 mm for subgroup 1b, p ⫽ NS), in LVFS (12 ⫾ 6.4% for subgroup 1a and 7.2 ⫾ 3.5% for subgroup 1b, p ⫽ NS), and LVEF (6.1 ⫾ 3.3% for subgroup 1a and 6.8 ⫾ 2.5% for subgroup 1b, p ⫽ NS) were similar between subgroups. Moreover, the dobutamineinduced changes in LAVmax and LAVp were similar between subgroups. However, LAEV and LAEF were increased more in subgroup 1a (10.7 ⫾ 5.7 mL and 19 ⫾ 9.5%, respectively; p ⫽ 0.0001 for both) than in subgroup 1b (0.09 ⫾ 3.9 mL and 0.2 ⫾ 8.7%, respectively) [Table 3, Fig 3]. Twelve-Month Follow-up During the 12-month follow-up period, two patients from group 2 died and two patients underwent heart transplantation. From group 1 (more specifically, subgroup 1b), one patient died during the follow-up period. Discussion The results of this study suggest that after inotropic stimulation in patients with chronic heart failure and nonischemic DCM, there is an improvement of left atrial volumetric indexes. Importantly, this study indicates that left atrial functional reserve, detected by echocardiographic dobutamine, might differentiate patients with V̇o2max values ⬎ 14 mL/kg/min higher or ⬍ 14 mL/kg/min. Interestingly, these findings also suggest that in the evolution of heart failure in this group of patients, left atrial might precede left ventricular contractile reserve impairment. Figure 2. Dobutamine-induced changes in LAEV (upper panel) and in LAEF (lower panel) in group 1 (n ⫽ 23 patients, white columns) and group 2 (n ⫽ 12 patients, black columns). Dob 0 and Dob 10 represent measurements at baseline and after dobutamine infusion of 10 g/kg/min, respectively. Left Atrial Function After Dobutamine Infusion The hemodynamic effects of -adrenergic stimulation with IV dobutamine have been extensively 1344 Downloaded From: http://publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/21983/ on 05/06/2017 Clinical Investigations Table 3—Echocardiographic Measurements Before and After Dobutamine Infusion in Subgroup 1a (n ⴝ 12 patients) and in Subgroup 1b (n ⴝ 11 patients)* Variables Subgroup 1a LAVmax, mL LAVp, mL LAVmin, mL LAEV, mL LAEF, % LAVmax-min, mL LVEDD, mm LVESD, mm LVFS, % LVEF, % Subgroup 1b LAVmax, mL LAVp, mL LAVmin, mL LAEV, mL LAEF, % LAVmax-min, mL LVEDD, mm LVESD, mm LVFS, % LVEF, % Before After Change† p Value 67.2 ⫾ 19.4 61 ⫾ 14.9 56.9 ⫾ 12 4.1 ⫾ 5.5 5.3 ⫾ 10.3 10.3 ⫾ 12.3 69.4 ⫾ 8.1 59.6 ⫾ 8.3 14.3 ⫾ 3 29.6 ⫾ 4.6 66 ⫾ 18.2 58.8 ⫾ 13.4 44 ⫾ 9.9 14.8 ⫾ 8.1 24.4 ⫾ 10.5 22 ⫾ 13.5 69.7 ⫾ 7.4 51.7 ⫾ 9.9 26.3 ⫾ 6.5 35.7 ⫾ 3.4 ⫺1.2 ⫾ 4 ⫺2.2 ⫾ 3.2 ⫺12.9 ⫾ 4.7 10.7 ⫾ 5.7 19 ⫾ 9.5 11.7 ⫾ 5.8 0.2 ⫾ 3.1 ⫺7.9 ⫾ 3 12 ⫾ 6.4 6.1 ⫾ 3.3 NS 0.04 0.001 0.001 0.001 0.002 NS 0.0001 0.0001 0.0001 62.4 ⫾ 15.2 51.7 ⫾ 11.7 44.4 ⫾ 9.4 7.4 ⫾ 6.1 13.4 ⫾ 11.1 18.1 ⫾ 12.1 74.7 ⫾ 8.4 65.4 ⫾ 9.1 12.6 ⫾ 3.8 26.6 ⫾ 4.9 61.1 ⫾ 17.7 50.2 ⫾ 10 42.7 ⫾ 6.1 7.4 ⫾ 5.8 13.6 ⫾ 8.9 18.4 ⫾ 14.7 74.3 ⫾ 7.6 59.3 ⫾ 7.7 20.3 ⫾ 4.7 33.4 ⫾ 3.5 ⫺1.4 ⫾ 5.6 ⫺1.5 ⫾ 4.4 ⫺1.6 ⫾ 5.7 0.1 ⫾ 3.9 0.2 ⫾ 8.7 0.3 ⫾ 7.7 ⫺0.4 ⫾ 3.2 ⫺6.2 ⫾ 2 7.7 ⫾ 3.5 6.8 ⫾ 2.5 NS NS NS NS NS NS NS 0.0001 0.0001 0.0001 *See Table 1 for expansion of abbreviation. Subgroup 1a represents patients with V̇o2max values above and subgroup 1b patients with V̇o2max values below group 1 V̇o2max median value (15.8 mL/kg/min). †Values obtained after inotropic stimulation minus those obtained at baseline. studied in animals14 and in human beings.15,16 Left atrial function includes three phases: reservoir, conduit, and contraction. Left atrial reservoir function is influenced by left atrial relaxation17 and stiffness,18 left ventricular contraction,19 and pulmonary circulation.20 In this study, although LAVmax was similar both before and after dobutamine infusion, total atrial reservoir function was increased probably as a result of the improvement of left atrial and ventricular contraction and left atrium stiffness.21 Contrasting effects of dobutamine on pulmonary circulation have been reported with some studies showing a decrease,22 no changes,23 or even an increase24 in pulmonary artery pressure, suggesting a different response to dobutamine on left atrial reservoir phase. The results of this study also showed that after dobutamine infusion there is an improvement of left atrial emptying, during ventricular relaxation and diastole (left atrium conduit phase). This is in keeping with previous reports suggesting that dobutamine infusion decreases left ventricular end-diastolic pressure in patients with normal left ventricular function,16 and increases early filling velocity15 in patients with systolic heart failure, leading to an increase in left atrial conduit volume.25 Dobutamine, by its well-known inotropic stimulawww.chestjournal.org tion, acts through 1 and 2 receptors and increases the contractility of both left atrium and left ventricle.26 In this respect, as observed in this study following dobutamine infusion, there is an improvement in LAEV and LAEF. Additionally, and in keeping with previous reports, LVESD, LVFS, and LVEF are also improved. Interestingly, the results of this study suggest that both left atrial and ventricular contractile reserve8 can distinguish patients with different exercise capacity (V̇o2max values ⬎ 14 mL/kg/min or ⬍ 14 mL/kg/min). Of note, it has been reported that exercise and left ventricular performance during exercise are mainly dependent on left ventricular diastolic filling, which to some extent is dependent on left atrial systolic function.6 Indeed, the results of this study suggest that there is a different response of atrial functional reserve to inotropic stimulation, presumably because of information transferred from a diseased ventricle to the corresponding atrium.27 The different atrial response to dobutamine is in accordance with previous reports showing the reduced and different contractile response of severely failing human hearts to -adrenergic stimulation.28 Moreover, it has been suggested that the same indexes of left atrial function reported in this study are related to peak aerobic capacity in patients with heart failure.7 Reflux of left atrial blood into the pulmonary veins CHEST / 122 / 4 / OCTOBER, 2002 Downloaded From: http://publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/21983/ on 05/06/2017 1345 atrial functional reserve is different, suggesting that left atrial might precede left ventricular contractile reserve impairment. Limitations Various factors such as beam-angulation chamber foreshortening and improper endocardial definition may account for two-dimensional echocardiographic volumetric discrepancy. However, the purpose of this study was not to determine the precise left atrial volume measurements but to measure the changes induced by dobutamine infusion. The heterogeneous contractile responses to dobutamine observed in this study among patients with chronic heart failure have been reported previously,31 and may reflect differences in 1-adrenoreceptor density, which was not investigated in this study. However, it has been suggested that the magnitude of the effects of the drug appears to decline as heart function deteriorates accompanied by a reduction in adrenoreceptor density.32 Conclusion Figure 3. Dobutamine-induced changes in LAEV (upper panel) and in LAEF (lower panel) in subgroup 1a, (n ⫽ 12 patients, white columns) and in subgroup 1b (n ⫽ 11 patients, black columns). See Figure 2 legend for definition of abbreviations. during atrial contraction has not been considered in this study. In this respect, left atrial ejection fraction might not be quite analogous to LVEF. However, left atrial functional reserve, as assessed by echocardiographic dobutamine-induced changes, can be estimated regardless of the amount of blood ejected into the pulmonary veins during atrial contraction. The results of this study confirm the findings of previous studies by showing that there is a correlation between V̇o2max and baseline left ventricular diastolic filling pattern,29 and extend this knowledge by demonstrating a correlation between baseline left ventricular diastolic filling pattern and left atrial functional reserve. Left atrial function has received considerably less attention than has left ventricular function even though evidence suggests that left atrial myopathy and failure may exist as an isolated entity, precede left ventricular myopathy, or coexist with left ventricular myopathy and failure.30 In this study, we observed that in patients with V̇o2max ⬎ 14 mL/kg/min, although left ventricular contractile reserve is similar between subgroups differentiated by the median value of V̇o2max, left Echocardiographic dobutamine can evaluate left atrial functional reserve in patients with chronic heart failure and nonischemic DCM. Furthermore, left atrial functional reserve detected by echocardiographic dobutamine may differentiate patients with V̇o2max values ⬎ 14 mL/kg/min or ⬍ 14 mL/kg/min. Interestingly, in this group of patients, left atrial contractile reserve impairment might be an earlier finding in the process of heart failure. ACKNOWLEDGMENT: The authors thank Mrs. Polymnia Anthopoulou for nursing assistance and Miss Eleni Binou for secretarial assistance. References 1 Matsuda Y, Toma Y, Ogawa H, et al. Importance of left atrial function in patients with myocardial infarction. Circulation 1983; 3:566 –571 2 Braunwald E, Frahm CJ. Studies on Starling’s law of the heart: IV. Observations on the hemodynamic functions of the left atrium in man. Circulation 1961; 24:633– 642 3 Ruskin J, McHale PA, Harley A, et al. Pressure-flow studies in man: effect of atrial systole on left ventricular function. J Clin Invest 1970; 4:472– 478 4 Hoit BD, Shao Y, Gabel M, et al. In vivo assessment of left atrial contractile performance in normal and pathological conditions using a time-elastance model. Circulation 1994; 89:1829 –1838 5 Nihoyannopoulos P, Karatasakis G, Frenneaux M, et al. Diastolic function in hypertrophic cardiomyopathy: relation to exercise capacity. J Am Coll Cardiol 1992; 19:536 –540 6 Jikuhara T, Sumimoto T, Taruni N, et al. Left atrial function 1346 Downloaded From: http://publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/21983/ on 05/06/2017 Clinical Investigations 7 8 9 10 11 12 13 14 15 16 17 18 19 20 as a reliable predictor of exercise capacity in patients with recent myocardial infarction. Chest 1997; 111:922–928 Triposkiadis F, Trikas A, Pitsavos C, et al. Relation of exercise capacity in dilated cardiomyopathy to left atrial size and systolic function. Am J Cardiol 1992; 70:825– 827 Paraskevaidis IA, Tsiapras D, Adamopoulos S, et al. Assessment of the functional status of heart failure in non ischemic dilated cardiomyopathy: an echo-dobutamine study. Cardiovasc Res 1999; 43:58 – 66 Paraskevaidis IA, Adamopoulos S, Kremastinos DT. Dobutamine echocardiographic study in patients with nonischemic dilated cardiomyopathy and prognostically borderline values of peak exercise oxygen consumption: eighteen month follow-up study. J Am Coll Cardiol 2001; 37:1685–1691 Dodge HT, Sandler H, Ballew AM, et al. The use of biplane angiocardiography for the measurements of left ventricular volumes in man. Am Heart J 1960; 60:762–776 Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantification of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr 1989; 2:358 –367 Weissman NJ, Nidorf SM, Guerrero LJ, et al. Optimal stage duration in dobutamine stress echocardiography. J Am Coll Cardiol 1995; 25:605– 609 Riley M, Northridge DB, Henderson E, et al. The use of an exponential protocol for bicycle and treadmill exercise testing in patients with chronic cardiac failure. Eur Heart J 1992; 13:1363–1367 Garrido JM, Gerson MC, Hoit BD, et al. Load independence of early diastolic filling parameters in the anesthetized canine model. J Nucl Med 1993; 34:1520 –1528 Nagata K, Iwase M, Sobue T, et al. Differential effects of dobutamine and a phosphodiesterase inhibitor on early diastolic filling in patients with congestive heart failure. J Am Coll Cardiol 1995; 25:295–304 Parker JD, Landzberg JS, Bittl JA, et al. Effects of adrenergic stimulation with dobutamine on isovolumic relaxation in the normal and failing human left ventricle. Circulation 1991; 84:1040 –1048 Toma Y, Matsuda Y, Moritani K, et al. Left atrial filling in normal human subjects: relation between left atrial contraction and left atrial early filling. Cardiovasc Res 1987; 21:255– 259 Hoit BD, Walsh RA. Regional atrial distensibility. Am J Physiol 1992; 31:H1356 –H1360 Castello R, Pearson AC, Lenzen P, et al. Evaluation of pulmonary venous flow by transesophageal echocardiography. J Am Coll Cardiol 1991; 18:65–71 Appleton CP. Hemodynamic determinants of Doppler pul- www.chestjournal.org 21 22 23 24 25 26 27 28 29 30 31 32 monary venous flow velocity components: new insights from studies in lightly sedated normal dogs. J Am Coll Cardiol 1997; 30:1562–1574 Stefanadis C, Dernellis J, Stratos C, et al. Assessment of left atrial pressure-area relation in humans by means of retrograde left atrial catheterization and echocardiographic automatic boundary detection: effects of dobutamine. J Am Coll Cardiol 1998; 31:426 – 436 Leier CV, Heban PT, Huss P, et al. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation 1981; 63:1279 –1285 Baumann G, Felix SB, Filcek SAL. Usefulness of dopexamine hydrochloride vs dobutamine in chronic congestive heart failure and effects on hemodynamics and urine output. Am J Cardiol 1990; 65:748 –754 Faggiano P, D’Aloia A, Gualeni A, et al. Dobutamine-induced changes in pulmonary artery pressure in patients with congestive heart failure and their relation to abnormalities of lung diffusing capacity. Am J Cardiol 1998; 82:1296 –1298 Lishida T, Meisner J, Tsujioka K, et al. Left ventricular filling dynamics: influence of left ventricular relaxation and left atrial pressure. Circulation 1986; 74:187–196 Brodde OT. The functional importance of 1- and 2adrenoreceptors in human heart. Am J Cardiol 1988; 62: 24C–29C Jones AHJ, Song JG, Gibson DG. An echocardiographic assessment of atrial mechanical behavior. Heart 1991; 65: 31–36 Bristow MR, Kantrowitz NE, Ginsburg R, et al. -Adrenergic function in heart muscle disease and heart failure. J Mol Cell Cardiol 1985; 17(suppl 2):41–52 Lapu-Bula R, Robert A, De Kock M, et al. Relation of exercise capacity to left ventricular systolic function and diastolic filling in idiopathic or ischemic dilated cardiomyopathy. Am J Cardiol 1999; 83:728 –734 Triposkiadis F, Pitsavos C, Boudoulas H, et al. Left atrial myopathy in idiopathic dilated cardiomyopathy. Am Heart J 1994; 128:308 –315 Borow KM, Lang RM, Neuman A, et al. Physiologic mechanism governing hemodynamic response to positive inotropic therapy in patients with dilated cardiomyopathy. Circulation 1988; 77:625– 637 Bristow MR, Ginsburg R, Umans V, et al. 1- and 2Adrenergic receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective 1-receptor down-regulation in HF. Circ Res 1986; 59:297–309 CHEST / 122 / 4 / OCTOBER, 2002 Downloaded From: http://publications.chestnet.org/pdfaccess.ashx?url=/data/journals/chest/21983/ on 05/06/2017 1347