* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Redox Non-Innocent Ligands
Cluster chemistry wikipedia , lookup
Jahn–Teller effect wikipedia , lookup
Metal carbonyl wikipedia , lookup
Oxidation state wikipedia , lookup
Evolution of metal ions in biological systems wikipedia , lookup
Hydroformylation wikipedia , lookup
Stability constants of complexes wikipedia , lookup
Spin crossover wikipedia , lookup
Metalloprotein wikipedia , lookup
Redox Non-Innocent Ligands Meredith Eno Topic Talk January 9, 2015 1 Innocent vs. Non-innocent ligands • “ligands are innocent when they allow the oxidation states of the central atoms to be defined” - C. K. Jørgensen, 1966 NH 3 H 3N Cl Co H 3N Cl NH 3 Co(III), d6 • H 3N Cl Pt H 3N Cl Ph 3P PPh 3 Rh Cl PPh 3 Rh(I), d8 Pt(II), d8 “non-innocent, has become synonymous with situation where with formal oxidation state, determined by a prescribed set of rules, differs from an oxidation state determined by experiment.” -Paul Chirik, 2011 O O N M N M N M NO + NO NO - O Chirik, P. J. Inorg. Chem., 2011, 50, 9737 Jorgensen, C. K. Coord. Chem. Rev., 1966, 1, 164 Kaim, W.; Schwederski, B. Coord. Chem. Rev.,2009, 254, 1580 2 Innocent vs. Non-innocent ligands • In the 1960’s metal dithiolene complexes were proposed to act noninnocently ! ! ! ! ! ! • Ph NiS 2 + Ph Ph toluene 120°C, 24h S S Ph S Ph Ni Ph S NiC 28H 20S 4 black solid Two possible electronic structures were considered for the isolated complex Ph S S Ph S Ph Ni Ph S experimental data S Ph S Ph - square planar Ni - forms complexes with pyridine at rt S S Ph Ph - paramagnetic at room temperature Ni(0), d10 Ni(II), d8 Schrauzer, G. N.; Mayweg, V. J. Am. Chem. Soc. 1962, 84,3221–3221 Eisenberg, R., Gray, H. B. Inorg. Chem., 2011, 50, 9741 3 Techniques Used to Determine Electronic Structures • X-ray crystallography: researchers usually look for bond length contractions or elongations on the ligand ! • Mössbauer Spectroscopy (1957): help to distinguish between oxidation states of metals, and also coordination number ! ! ! ! ! ! ! ! ! ! • Infrared Spectroscopy: distinguish between oxidation states of metals coordinated to ∏-accepting ligands 4 Techniques Used to Determine Electronic Structures • Electron Paramagnetic Resonance (EPR): used to study materials with unpaired electrons, can help distinguish between metal based radical or organic based radical ! ! ! ! ! ! ! ! • • • • g-factor (proportionality factor): measured at the middle of the signal g = 1.99-2.01 for organic radicals g = 1.4-3.0 for transition metal radicals Computational Studies: Used along with experimental results to determine; spin state, spin densities, broken symmetry calculations, N NH 2 NH 2 Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M.; Chirik, P. J. Am. Chem. Soc. 2006, 128, 13901 5 Classes of Redox Active Ligands A.! Spectator Ligand: Ligands accept/release electrons I. Ligands act as electron reservoirs S L M +n S' M +n L -2 S' M +(n-2) L higher energy (unstable) oxidation state lower energy (stable) oxidation state II. Ligands modify the lewis acid/base properties of the metal L M +n -e- L• + M +n B. Actor Ligands: ligands form/break chemical bonds of the substrate III. Ligand involved in making or breaking bonds of substrate L M +n S-X X S L M IV. Ligand induces radical-type reactivity of substrate L M +n S S M +(n+1) L Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 6 Classes of Redox Active Ligands A.! Spectator Ligand: Ligands accept/release electrons I. Ligands act as electron reservoirs S L M +n S' M +n L -2 S' M +(n-2) L higher energy (unstable) oxidation state lower energy (stable) oxidation state II. Ligands modify the lewis acid/base properties of the metal L M +n -e- L• + M +n B. Actor Ligands: ligands form/break chemical bonds of the substrate III. Ligand involved in making or breaking bonds of substrate L M +n S-X X S L M IV. Ligand induces radical-type reactivity of substrate L M +n S S M +(n+1) L Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 7 [ONNO]-Type Ligands As Electron Reservoirs, ! Allowing New Reactivity • Zirconium imido complexes are common in a number of transformations: [2+2] cycloadditions, hydroamination reactions, C-H bond activation etc. (usually redox neutral processes) HN Ar R' R Zr N Ar R Zr(IV), d0 Zr Ar N NHAr R R' R Zr Ar N R' H 2NAr reductive elimination? Zr II Ar N + R R' Zr (IV) reluctant to undergo R.E. Zr(II) high in energy Heyduk, A. F.; Zarkesh, R. A.; Nguyen, A. I. Inorganic Chemistry. 2011, 50, 9849 Meyer, K. E.; Walsh, P. J.; J. Am. Chem. Soc. 1995, 117, 974 8 [ONNO]-Type Pincer Ligands As Electron Reservoirs, ! Allowing New Reactivity • • • What if instead a Redox Ligand is employed to allow OA/RE at the ligand ! ! Ligand Based Oxidation ! O O O ! -e -e II II MII M M ! O O O ! ! ! -2 eN N ! N N O O ! O O ! reduced ligand oxidized ligand ! [N 2O2red ]4[N 2O2ox]2! ! Having a redox active ligand on Zr (also Ta) can allow new reactivity to occur, by allowing Zr to stay in more stable Zr(IV) oxidation state catchetol based ligands can dissociate readily after oxidation Heyduk, A. F.; Zarkesh, R. A.; Nguyen, A. I. Inorganic Chemistry. 2011, 50, 9849 Meyer, K. E.; Walsh, P. J.; J. Am. Chem. Soc. 1995, 117, 974 9 [ONNO]-Type Ligands As Electron Reservoirs, ! Allowing New Reactivity • Oxidation State of Ligand Determined by Crystal Structure Analysis H 4[N 2O2red ] 1. nBuLi (4 equiv) 2. ZrCl4(THF) 2 (55% yield) [N 2O2red ]Zr(THF)3 1a PhICl 2 (42% yield) [N 2O2ox]ZrCl2(THF) 2 Bond N O N O Bond Length (Å) C(1)-C(6) 1.423 C(1)-N(1) 1.403 C(6)-N(2) 1.407 reduced ligand [N 2O2red ]4- N O N O Bond Bond Length (Å) C(1)-C(6) 1.445 C(1)-N(1) 1.347 C(6)-N(2) 1.333 oxidized ligand [N 2O2ox]2Blackmore, K. J.; Lal, N.; Ziller, J. W.; Heyduk, A. F. J. Am. Chem. Soc. 2008, 130, 2728 10 [ONNO]-Type Ligands As Electron Reservoirs, ! Allowing New Reactivity Overall Reaction: H N 2 [N 2O2]Zr(THF)3 (10%) N H NH 2 2 N + 24 h N N N O Zr O [N 2O2]Zr(THF)3 N N L Zr L O O L ZrIV reduced ligand PhNH 2 L N N L Zr L O O NH 2 ZrIV Ph reduced ligand N Ph N Ph H N Ph H N Ph N H Ph ! L N N L Zr L O O NH Ph NHPh - second step shows “oxidative addition” with d0 metal, electrons come from the ligand - the azobenzene is likely formed through H-atom abstraction, with a net “reductive elimination” occurring at the ligand ! ZrIV reduced ligand N H Ph N N PhNH 2 L Zr L O O N Ph ZrIV oxidized ligand 11 Blackmore, K. J.; Lal, N.; Ziller, J. W.; Heyduk, A. F. J. Am. Chem. Soc. 2008, 130, 2728 Cobalt Catalyzed Negishi Type Cross-Coupling • Soper and co-workers demonstrated with several stoichiometric experiment that Co(III) complexes can perform net 2e- OA and RE reactions tBu tBu Ph O N Ph CoIII tBu N O tBu excess CH2Cl2 rt, 4 h tBu tBu O Co N Ph C-N bond length: 1.379 Å • Cl tBu N O tBu green solid 698 m/z C-N bond length: 1.359 Å Reaction of the alkyl cobalt with PhZnBr results in C-C bond formation ZnBr tBu tBu Ph O N Ph CoIII tBu N O tBu tBu EtBr MeCN tBu O Co N Ph O tBu tBu N tBu tBu Ph O N Ph CoIII tBu N O tBu (10-15% y) Smith, A. L.; Hardcastle, K. I.; Soper, J. D. J. Am. Chem. Soc. 2010, 132, 14358 Luca, O. R.; Crabtree, R. H. Chem. Soc. Rev., 2013, 42, 1440 12 Fe-based Bis(imino)pyridine (PDI) Ligands ! as Electron Reservoirs • Brookhart used PDI ligands in the 1990’s with Fe as polymerization catalysts, bulkier ligands causing less chain transfer and allowing longer lived polymerization ! ! ! ! 600 psi ! ! ! ! ! ! • Fe cat: Fe cat. (0.5 µmol) toluene, 60 °C, 12 min iPr n up to 31,000 MW N N N Fe X iPr iPr X iPr determined that [PDI]FeX2 complex was high spin Since the 1990’s Fe-PDI complexes have been used for a number of reactions: hydrogenation and hydroxylation of olefins, enyne cyclizations, and [2+2] cycloaddtions (1) + [Fe] (5 mol %) rt, 16-24 h 95% yield (2) [Fe] (0.3 mol %) 4 atm H 2 rt, minutes TOF = 1814 mol/hr Small, B. L.; Brookhard, M.; Bennett, A. M. J. Am. Chem. Soc. 1998, 120, 4049 S. K. Russell, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2011, 133, 8858–8861. S. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004,126, 13794–13807. 13 Fe-based Bis(imino)pyridine (PDI) Ligands ! as Electron Reservoirs • The exact electronic structure of these catalysts weren’t determined until around 2006. ! ! ! ! ! N ! N !Ar N Fe Ar Cl ! Cl ! 1-Cl 2 ! S=2, high spin ! Fe(II), PDI 0 ! ! ! • NaBEt 3H N -NaCl Ar N N Fe Cl 1-Cl S= 3/2 Ar NaBEt 3H 1 atm N 2 -NaCl N Ar N N Fe N2 Ar N2 1-(N 2)2 S=1 uncommon for Fe(0) complex 1-Cl2, has been previously characterized by Gibson and Brookhart, by X-ray crystallography, Mössbauer, and DFT calculations Small, B. L.; Brookhard, M.; Bennett, A. M. J. Am. Chem. Soc. 1998, 120, 4049 Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M.; Chirik, P. J. Am. Chem. Soc. 2006, 128, 13901 14 Fe-based Bis(imino)pyridine (PDI) Ligands ! as Electron Reservoirs N Ar N Fe N Ar Cl 1-Cl S= 3/2 Determination of 1-Cl electronic structure • • Mössbauer isomer shift and quadruple splitting consistent with Fe(II) complex DFT calculations using B3LYP functional, was used to calculate two possible, electronic structures for the 1-Cl complex. • BS(4,1) was found to be 10 kcal/mol lower in energy than BS(3,0). • BS(4,1); likely, high spin Fe(II) ion (SFe=2) antiferromagnetically coupled to a ligand radical (SL=1/2) • bond lengths calculated with BS(4,1) seem to correlate closely to experimental values δ= 0.77 mm/s ΔΕQ= 0.73 mm/s Key: m= unpaired spin-up electrons n= unpaired spin-down electrons isomer shift (δ) BS(m,n) ! S= (m-n/2) quadropole splitting (ΔΕQ) Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M.; Chirik, P. J. Am. Chem. Soc. 2006, 128, 13901 15 Fe-based Bis(imino)pyridine (PDI) Ligands ! as Electron Reservoirs N Ar N Fe N Ar Cl 1-Cl S= 3/2 Determination of 1-Cl electronic structure • DFT calculations using B3LYP functional, was used to calculate two possible, electronic structures for the 1-Cl complex. • BS(4,1) was found to be 10 kcal/mol lower in energy than BS(3,0). • BS(4,1); likely, high spin Fe(II) ion (SFe=2) antiferromagnetically coupled to a ligand radical (SL=1/2) • bond lengths calculated with BS(4,1) seem to correlate closely to experimental values N N Ar N δ= 0.77 mm/s ΔΕQ= 0.73 mm/s Fe N Ar Ar N FeII N Ar Cl Cl 1-Cl 1-Cl S= 3/2 high spin Fe(II), PDI - Key: m= unpaired spin-up electrons n= unpaired spin-down electrons isomer shift (δ) BS(m,n) S= (m-n/2) quadropole splitting (ΔΕQ) ! Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M.; Chirik, P. J. Am. Chem. Soc. 2006, 128, 13901 16 Fe-based Bis(imino)pyridine (PDI) Ligands ! as Electron Reservoirs N Ar N N Fe N2 Ar N2 Typical Fe(0) complexes have N2 stretches between 1950 and 2068 cm-1 • 1-(N 2)2 S=1 ! Pentane solution IR of 1-(N2)2 : 2073 cm-1 and 2132 cm-1 (more consistent with Fe(II)) • ! 1-(N2)2 has been reported previously to undergo loss of N2 to 4-coordinate complex, making characterization difficult • ! 1-DMAP complex was found to behave similarly to the 1-(N2)2 and many studies were done on this complex to determine the electronic structure. • Experimental Bond Distances (Å): N Ar N Fe N Ar N 1-DMAP N Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. Am. Chem. Soc. 2008, 128, 13340 Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M.; Chirik, P. J. Am. Chem. Soc. 2006, 128, 13901 17 Bond 1-Cl 2 1-DMAP N(1)-C(2) 1.301 1.350 C(8)-N(3) 1.313 1.358 C(2)-C(3) 1.453 1.414 C(7)-C(8) 1.443 1.406 N imine-Cimine enlongated Cipso-Cimine contracted Fe-based Bis(imino)pyridine (PDI) Ligands ! as Electron Reservoirs N Ar N N Fe N2 Ar N2 Typical Fe(0) complexes have N2 stretches between 1950 and 2068 cm-1 • 1-(N 2)2 S=1 ! Pentane solution IR of 1-(N2)2 : 2073 cm-1 and 2132 cm-1 (more consistent with Fe(II)) • ! 1-(N2)2 has been reported previously to undergo loss of N2 to 4-coordinate complex, making characterization difficult • ! N N N N2 2 N2 1-DMAP complex was found to behave similarly to the 1-(N2)2 and many studies were N Fe N N Fe N done on this complexArto determine theArelectronic Ar structure. N Ar • 1-(N 2)2 N Ar N Fe N 2 1-(N2)2 Experimental Bond Distances (Å): S=1 1-Cl2Bond 1-DMAP intermediate spin, Fe(II), PDI 2 Ar N 1-DMAP N Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. Am. Chem. Soc. 2008, 128, 13340 Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M.; Chirik, P. J. Am. Chem. Soc. 2006, 128, 13901 18 N(1)-C(2) 1.301 1.350 C(8)-N(3) 1.313 1.358 C(2)-C(3) 1.453 1.414 C(7)-C(8) 1.443 1.406 N imine-Cimine enlongated Cipso-Cimine contracted Fe-based Bis(imino)pyridine (PDI) Ligands ! as Electron Reservoirs ! • Fe-PDI catalyzed [2π + 2π] Cycloaddition of α,ω-Dienes H X 1-(N 2)2 (10 mol %) 23 °C, time iPr X X time (min) 1 CH2 300 92 1.8 2 SiMe2 300 0 0 3 NH a 300 0 0 4 N-Bn 26 90 21b 5 N-tBu <5 >95 >240c 6 NBoc 300 24 0.5 7 C(CO2Et) 2 141 >95 4 N iPr H entry N conv. -1 (%) TOF (h ) N Fe iPr iPr reduced ligand [PDI] 2-, FeII X X N Ar N Fe N N X oxidized ligand [PDI] 0, FeII Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. Am. Chem. Soc. 2008, 128, 13340 Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M.; Chirik, P. J. Am. Chem. Soc. 2006, 128, 13901 19 Ar Ar N Fe N X reduced ligand [PDI] 2-,FeII Ar Aerobic Oxidation via Re(V)-Oxo Species ! with Catechol Ligands • Metal complexes can react with (triplet) dioxygen and generate oxo-ligands, usually occurring via one-electron redox processes ! O O [Fe ]III O [Fe]III O2 • II [Fe] O [Fe]IV ! [Fe]II O ! [Fe]III Re(V) has a tendency to undergo 2e- processes, and therefore has a low probability to form the [ReVI]-O-O• , addition of a redox active ligand will allow the process to occur H 2O + Ph OH Ph O O O Re O O O 1 O O - O O O O Re O O O O O 2 reduced ligand Re V O Re O O O reduced ligand 4 - oxidized ligand Re V Re VII 2 O O O Re O O O Re O O O O O O oxidized ligand 3 Re V 1 - the catechol ligand allows Re to maintain its +5 oxidation state and access the superoxo species 2! homolysis of the O-O bond gives rise to desired oxo species other substrates require the use of Br4cat for oxidation Holm. R. H. Chem. Rev. 1987, 87, 1402 Lippert, C. A.; Riener, K.; Soper, J. D. Eur. J. Inorg. Chem. 2012, 554 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 20 ! Classes of Redox Active Ligands A.! Spectator Ligand: Ligands accept/release electrons I. Ligands act as electron reservoirs S L M +n S' M +n L -2 S' M +(n-2) L higher energy (unstable) oxidation state lower energy (stable) oxidation state II. Ligands modify the lewis acid/base properties of the metal L M +n -e- L• + M +n B. Actor Ligands: ligands form/break chemical bonds of the substrate III. Ligand involved in making or breaking bonds of substrate L M +n S-X X S L M IV. Ligand induces radical-type reactivity of substrate L M +n S S M +(n+1) L Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 21 Oxidation of Dihydrogen by Cationic Ir-Complex BF 4 • • • • Dithiolene and dioxalene complexes with IrCp* are not R R E E very lewis acidic despite the fact that they are 16 e Ir Cp* Ir Cp* E E complexes R R DFT studies suggest the zwitterionic structure shown is 16 ethe main resonance contributor E=O,S These complexes show low affinity for donor ligands (MeCN, CO and also H2) Thomas Rauchfuss et al. asked, can the reactivity of these ligands be turned on by a ligandlocalized oxidation Ar N O BF 4 Ar Ir AgBF4 CH2Cl2 1 N O Ir [1] + BF 4 Bond Lengths 1 N-C 1.33 Å O-C 1.34 Å AgBF4 CH2Cl2 Bond Lengths [1] + N-C 1.34 Å O-C 1.28 Å Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 Ringenberg, M. R.; Kokatam, S. L.; Heiden, Z. M.; Rauchfuss, T. B.J. Am. Chem. Soc. 2008, 130, 788 Don, M.-J.; Yang, K.; Bott, S. G.; Richmond, M. G.J. Orgnomet. Chem. 1997, 544, 15 22 Oxidation of Dihydrogen by Cationic Ir-Complex • • Complex [1]+ is now a stronger lewis acid which will coordinate H2, It is known that when H2 is coordinated to an electrophilic metal the acidity increases about 40 orders of magnitude. F 3C N [Ox + e- ] + O 2H+ Ir AgBF4 1 Ag [Ox] + 2B B = 2,6-di-tbu-pyridine Ox = Ag+ or 1 BF 4 BF 4 F 3C N F 3C N H2 O [1•H 2]+ O Ir Ir [1] + H2 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 Ringenberg, M. R.; Kokatam, S. L.; Heiden, Z. M.; Rauchfuss, T. B.J. Am. Chem. Soc. 2008, 130, 788 Don, M.-J.; Yang, K.; Bott, S. G.; Richmond, M. G.J. Orgnomet. Chem. 1997, 544, 15 23 Redox Switching with Metallocene ! Catalysts-Olefin Hydrogenation • • • In olefin hydrogenation reactions, OA of H2 is frequently the rate determining step. In Rh(I) diphosphinoferrocene complexes, rates can be increased by changing the R group of the phosphines However, a similar effect can be seen when changing the charge of the metalocene-based ligand CoII Ph 2 P Rh(solv) P Ph 2 + -e+e- CoIII • Fe Rh(NBD) P R R R=Ph, tBu 2+ Ph 2 P Rh(solv) P Ph 2 1 ox 1 red • RR P 1red is a better hydrogenation catalyst (16 times faster rate) due to the more electron rich Rh center 1ox is a faster more durable isomerization/ hydrosilation catalyst 1 ox (mol%) Et 3SiH THF, 20 °C Et 3Si Lorkovic, I. M., Duff, R. R., Wrighton, M. S. J. Am. Chem. Soc., 1995, 117, 3617 Luca, O. R., Crabtree, R. H. Chem. Soc. Rev., 2013, 42, 1440 Gregson, C. K. A., Gibson, V. C., Long, N. J. Marshall, E. L., Oxford, P. J., White, A. J. P. J. Am. Chem. Soc., 2006, 128, 7410 24 Redox Switching with Metallocene ! Catalysts-Polymeization • • Redox switching could be a powerful strategy for formation of co-block polymers In 2014 Diaconescu et al. demonstrated this concept in the formation of L-lactide and Ɛcaprolactone co-block polymers tBu tBu S O Ti(OiPr) 2 FeII O S tBu O 1red tBu O O O O AcFcBAr F CoCp2 O tBu tBu S O Ti(OiPr) 2 FeIII S O tBu 1 ox tBu ! Luca, O. R., Crabtree, R. H. Chem. Soc. Rev., 2013, 42, 1440 Gregson, C. K. A., Gibson, V. C., Long, N. J. Marshall, E. L., Oxford, P. J., White, A. J. P. J. Am. Chem. Soc., 2006, 128, 7410 25 Classes of Redox Active Ligands A.! Spectator Ligand: Ligands accept/release electrons I. Ligands act as electron reservoirs S L M +n S' M +n L -2 S' M +(n-2) L higher energy (unstable) oxidation state lower energy (stable) oxidation state II. Ligands modify the lewis acid/base properties of the metal L M +n -e- L• + M +n B. Actor Ligands: ligands form/break chemical bonds of the substrate III. Ligand involved in making or breaking bonds of substrate L M +n S-X X S L M IV. Ligand induces radical-type reactivity of substrate L M +n S S M +(n+1) L Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 26 Redox active ligands in Enzyme Active ! Sites-Galactose Oxidase (Y495) O Galactose Oxidase is a well studied enzyme which catalyzes the oxidation of D-galactose ! ! OH HO !HO O OH ! OH ! • HO H 2O2 O OH OH HO Tyr N CuII N O O H O The oxygen centered radical promotes oxidation of the alcohol through protoncoupled electron transfer • Bond making/breaking occurs between the redox active ligand and the substrate S O Tyr HO R S H 2O S HO HO N (Y272) (C228) N CuII N O H 2O active H 2O O2 • CuII e- OH O galactose oxidase O2 (H591) N O H 2O inactive (H694) N • Tyr N CuII N O O H R H S Tyr N O H CuI Hydrogen abstraction from alcohol substrate is RDS (kH/kD 6 - 8) O R Tyr S HO Tyr N CuII N O O H R H S Whittaker, J. W. Chem. Rev. 2003, 103, 2347 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 27 Redox Active Ligands in Bio-Inspired Dimerization of Secondary Alcohols • ! ! ! ! ! • • • • • • tBu Stack et al. had previously identified a mononuclear copper complex which catalyzes aerobic oxidation of activated substrates RO S tBu tBu R O S Cu Cu O tBu = S OR O R S tBu CuII O O tBu tBu N N O CuII tBu Cu O O Weighardt and coworkers discovered different ligands scaffolds can lead to new reactivity 2-propanol and diphenylcarbinol form the 1,2diol as the only organic product showed that monomeric form of the catalyst is inactive rate has a second order dependence on CuIIL species complex 2, is a diamagnetic species, coordination of the phenoxyl group is evident by the Raman Spectrum (ṽ (C-O·)=1451cm-1 Hydrogen abstraction from alcohol substrate is RDS (kH/kD =8 for CH3CD2OH) HO R' R' R' R' S 2H+ H RO S O R O Cu Cu 4 S Cu Cu O R 1 O R Whittaker, J. W. Chem. Rev. 2003, 103, 2347 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 Chaudhuri, P.; Hess, M.; Florke, U.; Wieghardt, K. Angew. Chem. Int. Ed. 1998, 37, 2217 O2 OR R' R' O ! 28 RO OH R' R' R O H 2O2 R O RO S S OR H Cu 2 R' R' R' R' H R O O O H RO S Cu Cu OR S O R 3 S Cu OR O R HO 2 R' H R' 2H+ Redox Active Ligands in Bio-Inspired Oxidation of Primary Alcohols with Ir-Aminyl Radical Complexes • • Wanted to see if transition metals are able to be more active and chemoselective than copper shown previously. Rhodium-aminyl radical complexes had been shown to abstract hydrogen from a variety of substrates previously by Grutzmacher et al. HOtBu KOtBu + OTf- trop2dach 1 [Ir 2(µ-Cl)2(coe) 4] AgOTf NH HN N HN KOtBu Ir Ir 2 3 K+ N N Ir BQ 4 RCHO + HQ 2SQ mixture of BQ, SQ•-, and HQ2do not lead to oxidation - no reaction occurs in the absence of KOtBu - could not proposed definite electronic structure for 5 - no experimental evidence for 6 or 7! - kH/kD for C6D5CD2OH ≈ 2 - SQ H R K+ O HN N N N Ir Ir 5 7 4•K [18]crown6 H R H O N N Ir K+ KOCH 2R 6 Konigsmann, M.; Donati, N.; Stien, A.; Schonberg, H.; Harmer, A.; Sreekanth, A.; Grutzmacher, H. Angew. Chem. Int. Ed. 2007, 46, 3567 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 29 Redox Active Ligands in Bio-Inspired Oxidation of Primary Alcohols with Ir-Aminyl Radical Complexes R OH 2 (0.01 mol%) BQ (0.01 mol %) KOtBu (0.03 mol %) chlorobenzene, 80 °C R O benzyl alcohol gives TOF >150,000 h -1 Konigsmann, M.; Donati, N.; Stien, A.; Schonberg, H.; Harmer, A.; Sreekanth, A.; Grutzmacher, H. Angew. Chem. Int. Ed. 2007, 46, 3567 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 30 Classes of Redox Active Ligands A.! Spectator Ligand: Ligands accept/release electrons I. Ligands act as electron reservoirs S L M +n S' M +n L -2 S' M +(n-2) L higher energy (unstable) oxidation state lower energy (stable) oxidation state II. Ligands modify the lewis acid/base properties of the metal L M +n -e- L• + M +n B. Actor Ligands: ligands form/break chemical bonds of the substrate III. Ligand involved in making or breaking bonds of substrate L M +n S-X X S L M IV. Ligand induces radical-type reactivity of substrate L M +n S S M +(n+1) L Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 31 Cyclopropanation by Cobalt(II)-Based Metalloradical Typical Rhodium-Cat. Cyclopropanation ! - Metal Carbenes in these cases are electrophilic (Fischer-type) metallocarbene - Enhanced reactivity is seen with electron rich substrates, such as aromatic olefins - Carbenes in these cases also suffer from dimerization side reactions common diazo precursors and catalysts widely accepted mechanism O L nRh R Y N2 Y R L nRh via L nRh O Y O H δ+ Intrieri, D,; Caselli, A.; Gallo, E. Eur. J. Inorg. Chem. 2011, 5071 H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518–8521 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 32 N2 H R Cyclopropanation by Cobalt(II)-Based Metalloradical Cobalt (II) Porphyrins in Asymmetric Cyclopropanation O N2 R R' O (1 equiv) + OEt (EDA) -or- [Co(1)] (1 mol %) DMAP (0.5 equiv) O toluene, rt R' R'' O O R O [Co(1)] N2 OtBu (t-BDA) (1.2 equiv) ! - In these cases dimerization side products are not an issue - electron deficient olefins react with high diasteroselectivity and high ee’s - seem to go through a distinctly different pathway than previously studied Rh2 systems Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007,129,12074 H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518–8521 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 33 Cyclopropanation by Cobalt(II)-Based Metalloradical Mechanistic Studies (Zhang and coworkers): - previous studies have shown that the reaction shows first order rate dependence on [catalyst], [EDA], and [styrene] - groups have also previously proposed carbene-carbon centered radicals, in similar [Co(por)] systems, based on IR streching frequencies of the CO stretching frequencies ! ! ! ! ! - addition of TEMPO significantly slowed the reaction down, but no irreversible reaction occurred and no intermediates could be identified - despite other groups proposing the unique carbene-carbon radicals no groups had performed EPR studies to try to identify the intermediate species O + N2 toluene OEt ? (4 equiv) [Co(1)] Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007,129,12074 H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518–8521 Lyaskovskyy, V.; de Bruin, B. ACS Catal. 2012, 2, 270 34 Cyclopropanation by Cobalt(II)-Based Metalloradical EPR Studies (Zhang and coworkers): ! ! ! ! ! ! ! ! • spectra w/o EDA is complicated and indicates 2-3 paramagnetic species. • Co(TPP) species are known to form 1:1 and 1:2 adducts with toluene • addition of EDA causes full conversion of the original complex, to a complicated mixture of 5 coordinate species ! Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007,129,12074 H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518–8521 35 Cyclopropanation by Cobalt(II)-Based Metalloradical EPR Studies (Zhang and coworkers): ! ! ! ! ! ! ! ! EPR after the addition of EDA is a mixture of three species (5:1:0.8) • species I signals are similar to a weak field ligand coordinating, such as H2O • species II g-values are in the range of strong field carbon adducts (such as CO) • species III EPR parameters indicate organic radical • ! N !EtO O 2 ! N N ! N CoN ! I-coordinated EDA ! ! H OEt H O OEt N N N Co N N N N Co N II-bridging carbene III-carbene-radical • In depth DFT calculations were used to further confirm the structures presents • species I could also be coordination through the carbon or the dinitrogen ! ! ! ! ! Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007,129,12074 H. Lu, W. I. Dzik, X. Xu, L. Wojtas, ! B. de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518–8521 36 Cyclopropanation by Cobalt(II)-Based Metalloradical Proposed Mechanism (Zhang and coworkers): ! Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007,129,12074 H. Lu, W. I. Dzik, X. Xu, L. Wojtas, B. de Bruin, X. P. Zhang, J. Am. Chem. Soc. 2011, 133, 8518–8521 37 Cobalt (II) Porphyrin-catalyzed Olefin Aziridination tBu tBu O O HN NH N Ar (1 equiv) + O Ar' S N 3 O (5 equiv) SO2Ar' [Co(por)] (2 mol %) chlorobenzene 40 °C, 18h N + N2 N Ar Co N N HN NH O O tBu tBu [Co(por)] Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.; Zhang, X.P. Org. Lett. 2008, 10, 1995 38 Cobalt (II) Porphyrin-catalyzed Olefin Aziridination Mechanistic Studies (Zhang and coworkers): - Similar to the cyclopropination mechanism involving the carbene radical, a nitrene radical has been proposed as an intermediate in this reaction - !Non-substituted Co(TPP) performs poorly in the reaction, does the hydrogen bonding capability of the !substituent play an important role ! ! Olivos Saurez, A. I.; Jiang, H.; Zhang, X. P.; de Bruin, B. Dalton Trans. 2011, 40, 5697 Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.; Zhang, X.P. Org. Lett. 2008, 10, 1995 39 Cobalt (II) Porphyrin-catalyzed Olefin Aziridination Mechanistic Studies (Zhang and coworkers): ! ! SOMO plot of nitrene radical Olivos Saurez, A. I.; Jiang, H.; Zhang, X. P.; de Bruin, B. Dalton Trans. 2011, 40, 5697 Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.; Zhang, X.P. Org. Lett. 2008, 10, 1995 40 Cobalt (II) Porphyrin-catalyzed Amination of C-H Bonds • originally reported in 2000 by Stefano Tollari and co-coworker, but the mechanism not disclosed until 2011 by the Zhang and de Bruin groups Me O O O N3 Me + R Co(TPP) (mol 10%) 110 °C, benzene N H O R Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.;Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc., 2011, 133, 12264 Cenini, S.; Gallo, E.; Penoni, A.; Ragaini, F.; Tollari, S. Chem. Commun., 2000, 2265. Luca, O. R.; Crabtree, R. H. Chem. Soc. Rev., 2013, 42, 1440 41 Conclusions • • • • Redox active ligands are very diverse and perform in a number of different ways - “Spectator”-as electron reservoirs or changing lewis acidity or basicity of metals - “Actor”- ligand engage directly with the substrate Allow first row transition metals participate in multi-electron processes or maintain their most stable oxidation states throughout a catalytic cycle interest in redox-active ligands has aslo lead to the development of better spectroscopic techniques and also new computational methods It is likely that new redox-active ligand scaffolds will be disclosed in the future allowing new reactions to be discovered 42