Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Magnetic monopole wikipedia , lookup

Field (physics) wikipedia , lookup

Aharonov–Bohm effect wikipedia , lookup

Time in physics wikipedia , lookup

Noether's theorem wikipedia , lookup

Lorentz force wikipedia , lookup

Maxwell's equations wikipedia , lookup

Path integral formulation wikipedia , lookup

Electric charge wikipedia , lookup

Electrostatics wikipedia , lookup

Transcript
Divergence and Curl of Electrostatic Fields
I’m diverging from your textbook presentation here to use some of what we’ve
developed.
We know that the electric field is given by:
Ep   k
all
charges
dq
 rp  ri 
2
rˆip
or in the discrete case, we have:
E   k qi 2 rˆip
 rp  ri 
all
charges
Let’s assume that we can write the charge distribution for the continuum case as a
volume charge distribution. Then:
 r d
E p   k   2 rˆip
 rp  ri 
all
space
where we are permitted to integrate over all space if the volume distribution correctly
specifies that the distribution is zero when we are in regions of space where the charges
are not.
Probably one simple example of a charge distribution which you have eagerly awaited is
that of a point charge:
  ri   4q   ri 
This would refer to a point charge of strength q located at the origin. Let’s show quickly
that this gives the correct electric field:
Ep 

k
all
charges
 ri d

rp  ri

2

rˆip 
q
all
space
 r d
k 4  i 2 rˆip  k
 rp  ri 
q
rip
2
rˆip 
kq
rp
2
rˆ
You can also see that if we have a series of n point charges, we could express the charge
distribution as:
n
  ri  
1
4
q  r 
i
i 1
i
With this, the superposition of the electric field is clearly seen:
n
Ep 

all
charges
k
 ri di
 rp  r 

ˆ
2 rip 
1
4
k
 qi ri d
i 1
rp  ri
all
space
2
n
rˆip  k 
i 1
qi
rp  ri
2
rˆip
The question of switching the orders of integration and summation hinges upon the
question of completeness, for an infinite series.
For a finite series, such as this, there is no problem.
In order to apply this to both sides of the equation, we’re going to need to write the
charge distribution as a divergence. Thus we can most certainly write:
  ri  
n
1
4
q  r 
3
i 1
i
i
But we know that the delta function can be written as a divergence:
(see Equation 1.100):
 rp 
   4  r 
r̂ip
3
ipp
rip2
The subscript on the divergence operator indicates (in accord with Equation 1.100) the
r
differentiation here is with respect to the space (point) coordinates rp while the charge
r
coordinates ri are held fixed. This subtle but important point needs to be rigorously
remembered.
So:
  ri  di 

all
charges

n
 rp   4qi
i 1
all
space
  d
r̂ip
rip2
Let’s put it all together now:
We can write:
 n
r̂ 
  ri    rp   4qi rip2 
ip
 i 1

But we know that the electric field is given exactly by:
 
E
q 
n
1
4 0
i 1
i
rˆip
rip2

n
  4qi
i 1
  E
rˆip
rip2
0
We thus have:
 
 rp  0 E    ri 
This is the differential form of Gauss’s law.
We can easily convert it into an integral form by performing an integral over all (point)
space:
  rp  0 E d rp     ri  d rp
 
all
rp
all
rp
I am probably being overly cautious here to specify the integration is over the space and
not the charge coordinates here. Since you’re integrating over all space, however, the
charge coordinates enclosed in this are necessarily a subset of this space.
Looking at the useful sheet, we can see that the left hand side of this integral can be
converted into a surface integral:
   V d   V  dA


volume
surface

Thus, we can write:
E  dA  10    ri  d rp 
surface
volume
Qenclosed
0
Ok, it’s pretty straight-forward to see then that the integral form of Gauss’s law becomes:
 E  Qenclosed
0
Where the electric flux is defined by:
E 
 E  dA
S
We have covered Gauss’s law in Physics 220 and Physics 250. I will refer you to the
notes on those courses in order to see examples for the application of Gauss’s Law in
simple situations.
r
In the Electrostatic situation, it’s not too hard to show that the curl of E is zero.
Let’s see how:
Consider the electric field arising from a point charge:
n
qi
E   4 
0
i 1
 
r̂ip
rip2
For a single point charge located at the origin, we have:
r
E p = 4 q r 2 rˆ
0 p
Let’s look at the integral of E on a path:
in the spherical coordinate system, the useful sheet says:
dl  drrˆ  rdˆ  r sin    dˆ
thus, we can write:
r r
E · dl = 4 q r2 dr
0
So, from a point a to a point b we have:
b
b
r r
b
q
q
E
·
d
l
=
dr
=
= 4 q 0a - 4 q 0 b
2
4

r
ò
ò 4 r
0
a
0
a
a
Now for an arbitrary closed path, it is abundantly clear that:
r r
E
òÑ · d l = 0
P
Warning!!! this only applies to electrostatic fields!
Now, look at Stokes’ theorem from the useful sheet:
  V   dA   V  dl
surface
path
Note: The surface here is singly connected (not a Klein Bottle type thing) and is bounded
by the path. However, other than that, there is no requirement that it have any particular
shape: indeed if your path were circular, the area integrated over could easily be a
hemisphere or a disk or other shapes. I think, however, it is probably best to avoid a
surface that extends to infinity and back bounded by a curve.
Let’s convert this via this theorem:
r r
r
r r
E
·
d
l
=
Ñ
´
E
·
dA
Ñ
Ñ
ò
ò
(
P
)
S
Thus, you can clearly see the implication:
r r r
Ñ´ E = 0
now, look at the implication of this (eq. 1.103)
r r r
r
r
Ñ´ E = 0 Þ E = - Ñ V
Now, that little path integral above will fail in an anticipated case … namely when we
look at the emf produced by a time rate of change of magnetic flux. That means, things
will get more complicated for time-dependant fields.
(This is going to involve a more general vector field).
look at eq. 1.105:
r
r r
r
F = - Ñ V + Ñ´ A
Also, since this is true for one charge, it’s true for them all via superposition.
Which brings us up to the calculation of this electric potential.
Since we now know:
r
r
E = - ÑV
and looking at the gradient theorem from the useful sheet:
b
  T   dl  T  b   T  a 
a
path
we can say:
b
 E  dl  V  a   V  b 
a
We can also choose any path so let’s pick this one:
r
  E  dl  V  r 

where the funny symbol refers to some arbitrarily chosen point.