Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 24 Digestive System Digestive System Anatomy • Digestive tract – Alimentary tract or canal – GI tract • Accessory organs – Primarily glands • Regions – – – – – – – Mouth or oral cavity Pharynx Esophagus Stomach Small intestine Large intestine Anus The function of digestive system: Mechanically breakdown the food stuff and enzymatically digest them. Absorb necessary nutrients including ions. Lubrication, emulsification, mixing, transport Deglutition, bolus, peristalisis, etc. Release of wastes from the body Functions • Ingestion: Introduction of food into stomach • Mastication: Chewing • Propulsion – Deglutition: Swallowing – Peristalsis: Moves material through digestive tract Functions • • • • • Mixing: Segmental contraction that occurs in small intestine Secretion: Lubricate, liquefy, digest Digestion: Mechanical and chemical Absorption: Movement from tract into circulation or lymph Elimination: Waste products removed from body Digestive Tract Histology Digestive System Regulation • Nervous regulation – Involves enteric nervous system • Types of neurons: sensory, motor, interneurons – Coordinates peristalsis and regulates local reflexes • Chemical regulation – Production of hormones • Gastrin, secretin – Production of paracrine chemicals • Histamine • Help local reflexes in ENS control digestive environments as pH levels Oral Cavity • Mouth or oral cavity – Vestibule: Space between lips or cheeks and alveolar processes – Oral cavity proper • Lips (labia) and cheeks • Palate: Oral cavity roof – Hard and soft • Palatine tonsils • Tongue: Involved in speech, taste, mastication, swallowing Salivary Glands • Produce saliva – Prevents bacterial infection – Lubrication – Contains salivary amylase • Breaks down starch • Three pairs – Parotid: Largest – Submandibular – Sublingual: Smallest a. Functions of the oral cavity In addition to chewing, or mastication in the oral cavity its enzyme contributes the initial stage of digestion. The salivary glands release salivary amylase, which digests starch into glucose and the other polysaccharides to disaccharides. (Fig. 24-7 and Fig. 24.9) Note that humans do not digest cellulose, since they do not have cellulase. In addition, saliva contains lysozyme and immunoglobulin A to fight against bacteria. Mucous release from the other glands in the oral cavity contains mucin, a proteoglycan, that contributes lubrication of the mouth. The salivary glands stimulation is primarily through the parasympathetic nerve. Higher centers of the brain also affect the activity of the salivary glands. Pharynx and Esophagus • Esophagus • Pharynx – Nasopharynx – Oropharynx: Transmits food normally – Laryngopharynx: Transmits food normally – Transports food from pharynx to stomach – Passes through esophageal hiatus (opening) of diaphragm and ends at stomach • Hiatal hernia – Sphincters • Upper • Lower Deglutition (Swallowing) • Three phases – Voluntary • Bolus of food moved by tongue from oral cavity to pharynx – Pharyngeal Reflex: Upper esophageal sphincter relaxes, elevated pharynx opens the esophagus, food pushed into esophagus – Esophageal • Reflex: Epiglottis is tipped posteriorly, larynx elevated to prevent food from passing into larynx Fig. 24-11 The swallowing process Stomach Anatomy • Openings – Gastroesophageal: To esophagus – Pyloric: To duodenum • Regions – – – – Cardiac Fundus Body Pyloric Stomach Histology • Layers – Serosa or visceral peritoneum: Outermost – Muscularis: Three layers • Outer longitudinal • Middle circular • Inner oblique – Submucosa – Mucosa Stomach Histology • Rugae: Folds in stomach when empty • Gastric pits: Openings for gastric glands – Contain cells • Surface mucous: Mucus • Mucous neck: Mucus • Parietal: Hydrochloric acid and intrinsic factor • Chief: Pepsinogen • Endocrine: Regulatory hormones i. Secretions in the stomach (Fig. 24-13) The mixture in the stomach is called chyme. Stomach secretes mucus, hydrochloric acid, gastrin, intrinsic factor, and pepsinogen, a precursor to protease pepsin. Alkaline mucus secreted from the mucus cells protects the epithelial cells from the acidic chyme and pepsin. Parietal cells in the gastric glands secrete intrinsic factor and concentrated HCl. Intrinsic factor is a vitamin B12 binding glycoprotein for better absorption of B12. Chief cells within the gastric glands secrete pepsinogen, which will be activated to pepsin by HCl. i. Low pH in the stomach Relatively high concentration of HCl released in the stomach has the following functions (a) The value of pH in the stomach is 1 - 3. (b) Most of bacteria are killed at this pH. But not all! Pylori (c) Inactivate amylase, thus no further digestion of carbohydrates. (d) Many proteins are denatured. (e) Pepsin, now activated at this pH, can digest these proteins Fig. 24-14 Secretion of HCl i. Secretion of H+ Release of H+ from parietal cell into the stomach starts with consumption of CO2 from blood. (Fig. 24-14) Note the names of players in this process: CA, ATP requiring proton/potassium exchange pump, bicarbonate/chloride shift, movements of potassium, bicarbonate and chloride ions. i. Regulation of stomach secretion 2 - 3 L of gastric secretion/day. Up to 700 ml/meal depending on the types of meals. Both neuronal and hormonal regulations are possible. For details study Fig. 24-15. Phases of Gastric Secretion Fig. 24-15a Fig. 24-15b Fig. 24-15c Movements in Stomach Small Intestine • Site of greatest amount of digestion and absorption • Divisions – Duodenum – Jejunum – Ileum: Peyer’s patches or lymph nodules • Modifications – Circular folds or plicae circulares, villi, lacteal, microvilli • Cells of mucosa – Absorptive, goblet, granular, endocrine Small Intestine Secretions • Mucus – Protects against digestive enzymes and stomach acids • Digestive enzymes – Disaccharidases: Break down disaccharides to monosaccharides – Peptidases: Hydrolyze peptide bonds – Nucleases: Break down nucleic acids • Duodenal glands – Stimulated by vagus nerve, secretin, chemical or tactile irritation of duodenal mucosa The primary center for digestion and adsorption. In three parts: duodenum, jejunum and ileum making up to 6 meters (Fig. 24-16) In fact, the digestive function in the small intestine follows the food stuff being digested by pancreatic juice to relatively smaller molecules. Observe the anatomy and histology of the intestinal wall to find intestinal glands, capillary networks in the villi, lacteal, goblet cells, etc. (Fig. 24-17) i. Secretions in the small intestine (Fig. 24-16, 17) Duodenal glands and Goblet cells release mucus. The final stage of break down to small molecules so that they may be absorbed through villi. Absorptive cells release digestive enzymes, such as aminopeptidase, peptidase, enterokinase (trypsinogen activator), amylase, sucrase, maltase, isomaltase, lactase and lipase. These enzymes are bound to the membranes of the absorptive cell Microville. Many other digestive enzymes are supplied from the pancreas. i. Movement in the small intestine Segmental contraction for mixing and peristaltic contractions for propelling are observed. The contractions move at rate of 1 cm/min, thus taking 3 - 5 hours for chyme to move from the pylorus to the ileocecal junction. ii. Absorption from the small intestine Out of about 9 L of water enters the digestive system, the small intestine absorbs about 8 - 8.5L by osmosis. Duodenum and Pancreas Duodenum Anatomy and Histology Pancreas • Anatomy – Endocrine • Pancreatic islets produce insulin and glucagon – Exocrine • Acini produce digestive enzymes – Regions: Head, body, tail • Secretions – Pancreatic juice (exocrine) • • • • • • Trypsin Chymotrypsin Carboxypeptidase Pancreatic amylase Pancreatic lipases Enzymes that reduce DNA and ribonucleic acid a. Functions of the pancreas The gross anatomy and cytology of the pancreas is shown in (Fig. 24-18). The pancreas has both endocrine and exocrine cells. Endocrine: Pancreatic islet contact to blood stream. Alpha cells – glucagons Beta cells – insulin Exocrine: Acini cells open to ducts and secrete enzymes Bicarbonate Ion Production i. Pancreatic juice to adjust pH. The columnar epithelial cells of the pancreas contains bicarbonate ions, which will be released into the intralobular duct of the pancreas. The bicarbonate ion neutralize the acidic chyme and stops pepsin activity, while make it possible for the pancreatic enzymes to remain active in the small intestine. (Fig. 24.22 of Seeley) i. Pancreatic enzymes The acinar cells of the pancreas produce pancreatic enzymes. Many proteolytic enzymes are released in the form of precursors. They include, trypsinogen , chymotrypsinogen, and procarboxypeptidase and are activated by other enzymes, such as enterokinase. Amylase, lipases are also present. i. Control of pancreatic secretion By both hormonal and neuronal means. (Fig. 24-22 and Fig. 24.23 of Seeley) Also study Table 24-1. Fig. 24-22 Hormone action Pancreatic Secretion Control Liver • Lobes – Major: Left and right – Minor: Caudate and quadrate • Ducts – Common hepatic – Cystic • From gallbladder – Common bile • Joins pancreatic duct at hepatopancreatic ampulla Functions of the Liver • Bile production – Salts emulsify fats, contain pigments as bilirubin • Storage – Glycogen, fat, vitamins, copper and iron • Nutrient interconversion • Detoxification – Hepatocytes remove ammonia and convert to urea • Phagocytosis – Kupffer cells phagocytize worn-out and dying red and white blood cells, some bacteria • Synthesis – Albumins, fibrinogen, globulins, heparin, clotting factors a. i. Liver functions Anatomy and histology: (Fig. 24.19) Bile production 600 - 1000 ml/day No digestive enzymes Dilute and neutralize stomach acid and emulsify fats. The pH of chyme is raised so that pancreatic enzymes can function. Contains bilirubin from broken down hemoglobin. Cholesterol, fast, fat-soluble hormone and lecithin are found. The blood and bile flow: (Fig. 24.20) Stimulates bile secretion - secretin from duodenum, by parasympathetic vegas nerve, increased blood flow in the liver, etc. (Fig. 24.21) Blood and Bile Flow ii. Storage Liver cells extract sugar from the blood and store as glycogen. Fats, vitamins, copper and iron are also stored for a short while Thus hepatocytes can control blood sugar level.. . iii. Nutrient interconversion Proteins to carbohydrates to fats etc., and back. Further transformation of the nutrients. Hydroxylation of vitamin D. i. Detoxification Conversion of toxic substances to acceptable substance. For example ammonia is converted to urea for elimination through the kidney as urine. ii. Phagocytosis Hepatic phagocytic cells (Kupffer cells) phagocyte old RBC, WBC, bacteria, etc. iii. Synthesis Many blood proteins are synthesized in the liver. Albumin, fibrinogen, globulin, heparin, clotting factors, etc. Duct System Gallbladder • Bile is stored and concentrated • Stimulated by cholecystokinin and vegal stimulation • Dumps into small intestine • Production of gallstones possible – Drastic dieting with rapid weight loss a. Functions of the gallbladder The gallbladder stores and concentrates bile produced by the liver. After a meal, it releases choleostokinin from the duodenum and stimulates releases of bile into the small intestine. (Fig. 24-21) Fig. 24-21 The Gallbladder Secretin and cholecystokinin: Inhibit gastric secretions in the stomach, Stimulate secretion and release of bile of the gallbladder Stimulate release of bicarbonate ion and digestive enzymes from the pancreas Large Intestine • Extends from ileocecal junction to anus • Consists of cecum, colon, rectum, anal canal • Movements sluggish (18-24 hours) Fig. 24-24 Histology of the large intestine Large Intestine • Cecum – Blind sac, vermiform appendix attached • Colon – Ascending, transverse, descending, sigmoid • Rectum – Straight muscular tube • Anal canal – Internal anal sphincter (smooth muscle) – External anal sphincter (skeletal muscle) – Hemorrhoids: Vein enlargement or inflammation a. Functions of the large intestine (Fig. 24.25) Slow sluggish movement in the colon taking 18 - 24 hours. Water and salts are absorbed and microorganisms help in the formation of feces. 1500 ml of chyme entering the colon end up only 80 - 150 ml of feces. Secretions of Large Intestine • Mucus provides protection – Parasympathetic stimulation increases rate of goblet cell secretion • Pumps – Exchange of bicarbonate ions for chloride ions – Exchange of sodium ions for hydrogen ions • Bacterial actions produce gases called flatus Histology of Large Intestine Movement in Large Intestine • Mass movements – Common after meals • Local reflexes in enteric plexus – Gastrocolic: Initiated by stomach – Duodenocolic: Initiated by duodenum • Defecation reflex – Distension of the rectal wall by feces • Defecation – Usually accompanied by voluntary movements to expel feces through abdominal cavity pressure caused by inspiration Fig. 24-25 The defecation reflex Digestion, Absorption, Transport • Digestion – Breakdown of food molecules for absorption into circulation • Mechanical: Breaks large food particles to small • Chemical: Breaking of covalent bonds by digestive enzymes • Absorption and transport – Molecules are moved out of digestive tract and into circulation for distribution throughout body Carbohydrates • Consist of starches, glycogen, sucrose, lactose, glucose, fructose • Polysaccharides broken down to monosaccharides • Monosaccharides taken up by active transport or facilitated diffusion and carried to liver • Glucose is transported to cells requiring energy – Insulin influences rate of transport Lipids • Include triglycerides, phospholipids, steroids, fat-soluble vitamins • Emulsification breaks down large lipid droplets to small Lipoproteins • Types – Chylomicrons • Enter lymph – VLDL – LDL • Transports cholesterol to cells – HDL • Transports cholesterol from cells to liver Cholesterol over 200 mg/100 ml blood risks coronary heart disease (CHD). Other risk factors are: hypertension, diabetes mellitus, cigarette smoking, low plasma high density lipids (HDL), Obesity – low HDL Exercise – high HDL and decreased LDL Ingestion of fatty acids – increased plasma cholesterol, higher LDH, lower HDL Proteins • Pepsin breaks proteins into smaller polypeptide chains • Proteolytic enzymes produce small peptide chains – Dipeptides, tripeptides, amino acids Water and Ions • Water – Can move in either direction across wall of small intestine depending on osmotic gradients • Ions – Sodium, potassium, calcium, magnesium, phosphate are actively transported Effects of Aging • Decrease in mucus layer, connective tissue, muscles and secretions • Increased susceptibility to infections and toxic agents – Ulcerations and cancers