* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download See regression.R : solve(t(X01) %*% X01) %*% t(X01) %*% Y
German tank problem wikipedia , lookup
Instrumental variables estimation wikipedia , lookup
Bias of an estimator wikipedia , lookup
Regression toward the mean wikipedia , lookup
Expectation–maximization algorithm wikipedia , lookup
Choice modelling wikipedia , lookup
Resampling (statistics) wikipedia , lookup
Regression analysis wikipedia , lookup
BIOINF 2118 Linear Regression Page 1 of 4 The least squares principle. We have data with a PREDICTOR (covariate, feature, attribute, independent variable), and a TARGET (outcome, dependent variable). Example: See GAGurine.R. The simple linear regression model: In this model, the x values are assumed to be fixed and known. The Y values are random. Under this model, the Y values are independent, and the distribution of each Yi is normal: When there is one predictor, maximizing the likelihood is the same as minimizing the sum of squares: . “Least Squares” finds the parameter values that minimize Q. Rearranging: The solution is BIOINF 2118 Linear Regression Page 2 of 4 , Multiple predictors: The model is . It turns out to simplify things if we define for all observations. Now we write the “design matrix” = . Then where the multiplication is the dot product of two vectors. So is the vector of parameters, and is the ROW vector in the design matrix. Stacking all the outcomes into a vector Y, we get (matrix multiplication) In matrix notation it’s a lot simpler: , See regression.R : solve(t(X01) %*% X01) %*% t(X01) %*% Y (The general multiple-variable version of the normal distribution has density . variance, and Here, observations are independent with equal , so the likelihood function is BIOINF 2118 Estimating the variance Linear Regression Page 3 of 4 The maximum likelihood estimate for the variance is . This will be biased (too small from overfitting). The unbiased estimate is , because we have fitted . The key assumptions: parameters. E(Y ) is linear in the predictors. The “errors” are i.i.d. normal. The error variance is fixed (homoscedasticity); it does not change with the predictors. Distribution of the estimators: For the coefficients: We first concentrate on the case k=1 (just one predictor in addition to the intercept). Let . Then . Conditional on the X’s, . so the estimator is unbiased, and In summary, You can check whether this makes sense. First, the dimensions of both sides is (Y’s per X)2. Second, as the variance of Y increases, the estimate gets less precise. Third, as the variance of the X’s increase, the estimate gets MORE precise. So, you can increase your precision of the estimate.... how? What are the STUDY DESIGN IMPLICATIONS? BIOINF 2118 Linear Regression Page 4 of 4 Multivariate view Again, it’s much simpler in matrix notation, and more general. Let the vector of parameter estimates be . Then . This is the basis for the Wald test produced by lots of statistical software. For testing the null hypothesis that , the approximate 95% confidence interval is , where . The subscript jj means the entry in the inverse matrix for the j th column and j th row. The P-value for the two-sided test is P= where is the standard normal c.d.f.. But one can do better. This pretends that the estimate with is correct. Of course not. We replace to account for the k+1 parameters fitted when we estimate . See Dalgaard Chapter 6, Section 6.1-6.2, regression-Dalgaard.Rmd, GAGurine.R. For the variance estimate: If we knew the regression line exactly, we’d have . Then we could get a confidence interval for easily. Just set this equal to the lower and upper 2.5% quantiles of Lower bound for Upper bound for , and solve for : s y2 = Sy2 /qchisq(0.975, n) = Sy2 /qchisq(0.025, n) But we have to estimate the regression parameters, so we reduce the degrees of freedom: , and we get the confidence interval Lower bound for Upper bound for s y2 = Sy2 /qchisq(0.975, ) Sy2 /qchisq(0.025, ) =