Download Figure 55 - We can`t sign you in

Document related concepts

Audio power wikipedia , lookup

Electrical substation wikipedia , lookup

History of electric power transmission wikipedia , lookup

Current source wikipedia , lookup

Control system wikipedia , lookup

Flip-flop (electronics) wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Power engineering wikipedia , lookup

Stray voltage wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Mercury-arc valve wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Voltage optimisation wikipedia , lookup

Voltage regulator wikipedia , lookup

Two-port network wikipedia , lookup

Distribution management system wikipedia , lookup

Integrating ADC wikipedia , lookup

Alternating current wikipedia , lookup

Three-phase electric power wikipedia , lookup

Mains electricity wikipedia , lookup

Schmitt trigger wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Rectifier wikipedia , lookup

Buck converter wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Islanding wikipedia , lookup

Opto-isolator wikipedia , lookup

Power inverter wikipedia , lookup

Solar micro-inverter wikipedia , lookup

Transcript
AMPS80 HP Power System
Installation & Operation Manual
Part #026-069-B0
Effective 4/2013
member of The
Group™
Your Power Solutions Partner
AMPS80 HP Power System
NOTE:
Photographs contained in this manual are for illustrative purposes only. These photographs
may not match your installation.
NOTE:
Operator is cautioned to review the drawings and illustrations contained in this manual
before proceeding. If there are questions regarding the safe operation of this powering system, contact Alpha Technologies or your nearest Alpha representative.
NOTE:
Alpha shall not be held liable for any damage or injury involving its enclosures, power supplies, generators, batteries, or other hardware if used or operated in any manner or subject
to any condition not consistent with its intended purpose, or is installed or operated in an
unapproved manner, or improperly maintained.
For technical support, contact Alpha Technologies:
Canada and USA: 1-888-462-7487
International: +1-604-436-5547
Copyright
Copyright © 2013 Alpha Technologies Ltd. All rights reserved. Alpha is a registered trademark of Alpha Technologies.
No part of this documentation shall be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted in any form or by any means manual, electric, electronic, electromechanical, chemical, optical, or
otherwise without prior explicit written permission from Alpha Technologies.
This documentation, the software it describes, and the information and know-how they contain constitute the
proprietary, confidential and valuable trade secret information of Alpha Technologies, and may not be used
for any unauthorized purpose, or disclosed to others without the prior written permission of Alpha Technologies.
The material contained in this document is for information only and is subject to change without notice.
While reasonable efforts have been made in the preparation of this document to assure its accuracy, Alpha
Technologies assumes no liability resulting from errors or omissions in this document, or from the use of the
information contained herein. Alpha Technologies reserves the right to make changes in the product design
without reservation and without notification to its users.
026-069-B0 Rev G
1
Table of Contents
1. Safety������������������������������������������������������������������������������������������������������������������������������ 6
1.1 Safety Symbols����������������������������������������������������������������������������������������������������������������������������� 6
1.2 General Safety������������������������������������������������������������������������������������������������������������������������������ 7
1.3 External Battery Safety����������������������������������������������������������������������������������������������������������������� 8
1.4 Utility Power Connection��������������������������������������������������������������������������������������������������������������� 8
1.5 Equipment Grounding������������������������������������������������������������������������������������������������������������������� 9
2. Product Description������������������������������������������������������������������������������������������������������ 10
2.1 Theory of Operation�������������������������������������������������������������������������������������������������������������������� 10
2.2 System Components������������������������������������������������������������������������������������������������������������������� 12
2.3 Rear Components����������������������������������������������������������������������������������������������������������������������� 13
2.4 Module Location Relative to System Wiring������������������������������������������������������������������������������� 14
3. AC and DC Power Configurations�������������������������������������������������������������������������������� 18
3.1 Power System Configuration Terminology���������������������������������������������������������������������������������� 18
3.2 3-Phase Systems – Recommended AC and DC Breakers��������������������������������������������������������� 19
3.3 120V/240V Split Phase or 120/208V 2-Pole Systems���������������������������������������������������������������� 22
3.4 DC Fuse/Breaker ����������������������������������������������������������������������������������������������������������������������� 25
3.5 AMPS80 DC Feed Options��������������������������������������������������������������������������������������������������������� 26
3.6 How to Configure Inverters in AC Input Groups, AC Output Groups and DC Input Groups������� 27
4. System Pre-Installation������������������������������������������������������������������������������������������������� 29
4.1 Site Selection������������������������������������������������������������������������������������������������������������������������������ 29
4.2 Recommended Installation Layout���������������������������������������������������������������������������������������������� 30
4.3 Option for DC input into AMPS80����������������������������������������������������������������������������������������������� 31
4.4 Wiring for Generator and/or External MBS��������������������������������������������������������������������������������� 32
4.5 Transporting the Cabinet������������������������������������������������������������������������������������������������������������� 33
4.6 Unpacking Instructions���������������������������������������������������������������������������������������������������������������� 34
4.7 Anchoring the Cabinet����������������������������������������������������������������������������������������������������������������� 35
5. System Installation�������������������������������������������������������������������������������������������������������� 40
5.1 Input/Output Cabling Overview��������������������������������������������������������������������������������������������������� 42
5.2 AC Connections�������������������������������������������������������������������������������������������������������������������������� 43
5.3 DC Connections�������������������������������������������������������������������������������������������������������������������������� 44
2
026-069-B0 Rev G
5.4 Commissioning the System for the First Time���������������������������������������������������������������������������� 48
6. System Operation��������������������������������������������������������������������������������������������������������� 56
6.1 Inverter Module Indicators���������������������������������������������������������������������������������������������������������� 56
6.2 T2S Inverter Control Card����������������������������������������������������������������������������������������������������������� 58
6.3 Using the CXC Unified System Controller���������������������������������������������������������������������������������� 59
6.4 Rectifier Features������������������������������������������������������������������������������������������������������������������������ 73
6.5 Synchronization with a Maintenance Bypass Switch (MBS)������������������������������������������������������� 77
7. Maintenance����������������������������������������������������������������������������������������������������������������� 78
7.1 Preventive Maintenance������������������������������������������������������������������������������������������������������������� 78
7.2 Recommended maintenance schedule��������������������������������������������������������������������������������������� 78
7.3 Tools, Spare Parts and Equipment��������������������������������������������������������������������������������������������� 78
7.4 Replacing the T2S Inverter Control Card������������������������������������������������������������������������������������ 80
7.5 Inverter or Rectifier Fan Replacement���������������������������������������������������������������������������������������� 81
7.6 Replacing an AIM2500/1500 Inverter Module���������������������������������������������������������������������������� 82
7.7 Surge Suppression Replacement����������������������������������������������������������������������������������������������� 83
7.8 Fuse Replacement���������������������������������������������������������������������������������������������������������������������� 85
7.9 Synchronization After Maintenance or Repair����������������������������������������������������������������������������� 86
8. Troubleshooting������������������������������������������������������������������������������������������������������������ 87
8.1 Non Recoverable Error��������������������������������������������������������������������������������������������������������������� 87
8.2 Recoverable Error����������������������������������������������������������������������������������������������������������������������� 87
8.3 Alarm Codes������������������������������������������������������������������������������������������������������������������������������� 88
9. System Specifications��������������������������������������������������������������������������������������������������� 97
9.1 Specifications for 48/120 Inverter Module����������������������������������������������������������������������������������� 99
9.2 Specifications for 48-1.8 kW Rectifier��������������������������������������������������������������������������������������� 100
10. Configuration Parameters����������������������������������������������������������������������������������������� 101
10.1 Transferring Inverter Settings to Another System������������������������������������������������������������������� 101
10.2 Examples of Modifications to Configuration Parameters�������������������������������������������������������� 101
10.3 Global Settings (ID 1 – 50)������������������������������������������������������������������������������������������������������ 103
10.4 Inverter Parameters (ID 51 – 550)������������������������������������������������������������������������������������������ 104
10.5 Alarm Settings (ID 551-950)�����������������������������������������������������������������������������������������������������110
11. Certification����������������������������������������������������������������������������������������������������������������113
12. Warranty��������������������������������������������������������������������������������������������������������������������114
026-069-B0 Rev G
3
List of Figures
Figure 1 — Controller breakers on top of the AMPS80���������������������������������������������������������������������� 13
Figure 2 — 20 kVA split-phase or 120/208V 2-pole system��������������������������������������������������������������� 14
Figure 3 — 40 kVA, split-phase or 120/208V 2-pole system������������������������������������������������������������� 15
Figure 4 — 75 kVA, 3-phase systems������������������������������������������������������������������������������������������������ 16
Figure 5 — 30 kVA, 3-phase system������������������������������������������������������������������������������������������������� 17
Figure 6 — Split Phase from a Single phase supply������������������������������������������������������������������������� 18
Figure 7 — 2-Pole from a 3-phase supply����������������������������������������������������������������������������������������� 18
Figure 8 — Monitotring AC Input Groups, AC Output Groups and DC Input Groups������������������������ 27
Figure 9 — Inverter mapping for AC and DC Groups������������������������������������������������������������������������ 28
Figure 10 — Installation layout and clearances��������������������������������������������������������������������������������� 30
Figure 11 — Top front view showing installing of brackets in kit #7400448-001�������������������������������� 31
Figure 12 — System Schematic with Generator and MBS���������������������������������������������������������������� 32
Figure 13 — Arrangement of lifting eyes on top of cabinet���������������������������������������������������������������� 33
Figure 14 — Mounting hole pattern��������������������������������������������������������������������������������������������������� 35
Figure 15 — Single AC feed�������������������������������������������������������������������������������������������������������������� 36
Figure 16 — Dual AC Feed���������������������������������������������������������������������������������������������������������������� 36
Figure 17 — Rectifier terminal block�������������������������������������������������������������������������������������������������� 37
Figure 18 — Representative system wiring for AMPS inverter or hybrid system with MBS with single
AC input feed.������������������������������������������������������������������������������������������������������������������������� 39
Figure 19 — Representative system wiring for AMPS inverter system with independent AC input feed
for MBS����������������������������������������������������������������������������������������������������������������������������������� 39
Figure 20 — Battery and power connections������������������������������������������������������������������������������������� 41
Figure 21 — Top view of AMPS80 showing AC and DC connection partitions���������������������������������� 42
Figure 22 — AC Connections������������������������������������������������������������������������������������������������������������ 43
Figure 23 — DC connections - top view�������������������������������������������������������������������������������������������� 44
Figure 24 — Cabling and hardware arrangement������������������������������������������������������������������������������ 44
Figure 25 — DC connection dimensions – front view������������������������������������������������������������������������ 45
Figure 26 — DC tie bar for single battery string��������������������������������������������������������������������������������� 46
Figure 27 — DC tie bar for two battery strings����������������������������������������������������������������������������������� 47
Figure 28 — Controller default home screen������������������������������������������������������������������������������������� 49
Figure 29 — Seed modules shown for 40 kVA, split-phase systems������������������������������������������������� 50
4
026-069-B0 Rev G
Figure 30 — Inverter module showing AC input LED������������������������������������������������������������������������ 50
Figure 31 — Unlocking and locking an inverter module for removal or insertion������������������������������� 51
Figure 32 — Inserting and removing an inverter module������������������������������������������������������������������� 51
Figure 33 — Inverters > View Live Status����������������������������������������������������������������������������������������� 52
Figure 34 — Matching AC Input Groups to AC Output Groups��������������������������������������������������������� 53
Figure 35 — Inserting blanks in open slots���������������������������������������������������������������������������������������� 55
Figure 36 — Fig. 4.1 Inverter module status, power LEDs��������������������������������������������������������������� 56
Figure 37 — Output power indicator LEDs���������������������������������������������������������������������������������������� 57
Figure 38 — T2S front panel�������������������������������������������������������������������������������������������������������������� 58
Figure 39 — CXC system controller�������������������������������������������������������������������������������������������������� 59
Figure 40 — LCD active areas����������������������������������������������������������������������������������������������������������� 61
Figure 41 — Password entry pop-up window������������������������������������������������������������������������������������ 61
Figure 42 — Navigation screen��������������������������������������������������������������������������������������������������������� 62
Figure 43 — Illustration of web interface window (sample home page)�������������������������������������������� 63
Figure 44 — View live status page���������������������������������������������������������������������������������������������������� 64
Figure 45 — View live status — inverters page��������������������������������������������������������������������������������� 64
Figure 46 — View group status window — inverters page���������������������������������������������������������������� 65
Figure 47 — Group mapping window������������������������������������������������������������������������������������������������ 66
Figure 48 — Set input window ���������������������������������������������������������������������������������������������������������� 67
Figure 49 — Set Output window ������������������������������������������������������������������������������������������������������� 68
Figure 50 — General settings window ���������������������������������������������������������������������������������������������� 69
Figure 51 — Manage Config File window ����������������������������������������������������������������������������������������� 69
Figure 52 — Configure alarms window ��������������������������������������������������������������������������������������������� 70
Figure 53 — T2S alarms in event logs����������������������������������������������������������������������������������������������� 71
Figure 54 — Retrieve inverter alarm history file��������������������������������������������������������������������������������� 71
Figure 55 — Signals (inverters) window ������������������������������������������������������������������������������������������� 72
Figure 56 — Cordex CXRF 48 V rectifier������������������������������������������������������������������������������������������� 73
Figure 57 — T2S LED sequence during initialization������������������������������������������������������������������������ 80
Figure 58 — Update Inventory steps������������������������������������������������������������������������������������������������� 81
Figure 59 — Rectifier fuse locations�������������������������������������������������������������������������������������������������� 85
Figure 60 — Manage Config File window���������������������������������������������������������������������������������������� 101
026-069-B0 Rev G
5
1. Safety
SAVE THESE INSTRUCTIONS:
This manual contains important safety instructions that
must be followed during the installation, servicing, and maintenance of the product. Keep it in a safe place. Review the drawings and illustrations contained in this manual before proceeding. If there are any questions regarding the safe installation or operation of this product, contact Alpha Technologies or the nearest Alpha representative. Save this document for future reference.
1.1 Safety Symbols
To reduce the risk of injury or death, and to ensure the continued safe operation of this product, the following
symbols have been placed throughout this manual. Where these symbols appear, use extra care and attention.
The use of ATTENTION indicates specific regulatory/code requirements that may affect the
placement of equipment and /or installation procedures.
NOTE:
A NOTE provides additional information to help complete a specific task or procedure. Notes
are designated with a checkmark, the word NOTE, and a rule beneath which the information
appears.
CAUTION!
CAUTION indicates safety information intended to PREVENT DAMAGE to material or equipment. Cautions are designated with a yellow warning triangle, the word CAUTION, and a rule
beneath which the information appears.
WARNING!
WARNING presents safety information to PREVENT INJURY OR DEATH to personnel. Warnings are indicated by a shock hazard icon, the word WARNING, and a rule beneath which the
information appears.
HOT!
The use of HOT presents safety information to PREVENT BURNS to the technician or user.
6
026-069-B0 Rev G
1.2 General Safety
•
Only qualified personnel shall install, operate, and service the power system and components.
•
Observe all applicable national and local electrical and building codes during installation.
•
Maintain the security of all SELV Circuits in the AMPS80 when connecting to other equipment like signaling/alarm circuits, emergency power off (EPO) circuits, relay contacts, Ethernet or CANBUS. The other
equipment must be the same circuit type.
•
Bolt the AMPS80 HP system securely to the floor.
•
Always assume electrical connections and/or conductors are live.
•
Turn off all circuit breakers and double-check potentially charged components with a voltmeter before
performing installation or maintenance.
•
Before installation, verify that the input voltage and current requirements of the load are within the specifications of the power system. Refer to the product nameplate label.
•
Keep tools away from walk areas to prevent personnel from tripping over the tools.
•
Wear safety glasses when working under any conditions that may be hazardous to your eyes.
•
Do not work on the power system, or connect or disconnect cables, during atmospheric lightning activity.
•
Do not let water enter the enclosure as this can cause electrical shorts, shocks, or electrocutions.
•
Do not remove the covers of electrical components as this can cause electrical shorts, shocks or electrocutions. There are no user serviceable parts inside.
•
The power system is certified for use in restricted access locations only.
•
All operators must be trained to perform the emergency shutdown procedure.
•
For Hybrid UPS configurations, see section 8 to replace internal fuses.
•
The power system must be connected only to a dedicated branch circuit.
•
Equip the utility service panel with a circuit breaker of appropriate rating.
•
Do not exceed the output rating of the system when connecting the load.
•
External metal surface temperatures on the rear of the AMPS80 HP system can exceed 70°C. Use caution when working around the equipment while it is in operation.
•
Always use proper lifting techniques when handling units, modules, or batteries.
•
The power system contains more than one live circuit. Voltage may still be present at the output even
when the input voltage is disconnected.
•
Minimize the risk of sparks and wear on the connectors. Always switch off the inverter’s battery circuit
breaker before connecting or disconnecting the battery pack.
•
In the event of a short-circuit, batteries present a risk of electrical shock and burns from high currents.
Observe proper safety precautions.
•
Always wear protective clothing, such as insulated gloves, and safety glasses or a face shield when
working with batteries.
•
Carry a supply of water, such as a water jug, to wash eyes or skin in case of exposure to battery electrolyte.
•
Do not allow live battery wires to contact the enclosure chassis. Shorting battery wires can result in a fire
or possible explosion.
•
Replace batteries with those of an identical type and rating. Never install old or untested batteries.
026-069-B0 Rev G
7
•
Only use insulated tools when handling batteries or working inside the enclosure.
•
Remove all rings, watches and other jewelry before servicing batteries.
•
Recycle used batteries. Spent or damaged batteries are environmentally unsafe. Refer to local codes for
the proper disposal of batteries.
•
A disconnect switch shall be provided by others for the AC input and AC output circuits.
•
Risk of Electric Shock and Fire Hazard: replace fuse with the same type and rating.
1.3 External Battery Safety
•
The power system requires an over-current protection device for the external batteries. The maximum
allowable current is typically 450A but can be less depending on the model. Follow the local electrical
codes.
•
Ensure that the external battery connection is equipped with a disconnect.
•
If the batteries are stored for extended periods before the installation, charge the batteries at least once
every three months to ensure optimum performance and maximum battery service life.
•
Refer to the battery manufacturer’s recommendation to select the correct float and equalize charge voltage settings. Failure to do so can damage the batteries. Verify that the battery charger’s float and equalize settings are correct.
•
The batteries are temperature sensitive. During extremely cold conditions, a battery’s charge acceptance is reduced and requires a higher charge voltage. During extremely hot conditions, a battery’s
charge acceptance is increased and requires a lower charge voltage. To allow for changes in temperature, the battery charger must be equipped with a temperature compensating system. For Hybrid UPS
configurations, refer to the rectifier manual for information about temperature compensation.
•
If the batteries appear to be overcharged or undercharged, first check for defective batteries and then
verify that the charger voltage settings are correct.
•
To ensure optimal performance, inspect the batteries according to the battery manufacturers recommendations. Check for signs of cracking, leaking, or unusual swelling. Some swelling is normal.
•
Check the battery terminals and connecting wires. Periodically clean the battery terminal connectors
and retighten them to the battery manufacturer's torque specifications. Spray the terminals with an approved battery terminal coating such as NCP-2 or No-Ox.
•
Verify that the polarity of the cables are correct before connecting the batteries to the power module. The
polarity is clearly marked on the batteries. The battery breaker will trip and the rectifiers may be damaged if the cables are connected with the wrong polarity.
1.4 Utility Power Connection
Connecting to the utility must be performed by qualified service personnel only and must comply with local
electrical codes. The utility power connection must be approved by the local utility before the installation.
8
026-069-B0 Rev G
1.5 Equipment Grounding
To provide a ready, reliable source of backup power, the power system must be connected to an effective
grounding and earthing system. The grounding system must be designed to protect both personnel and
equipment.
WARNING!
Low impedance grounding is mandatory for personnel safety, critical for the proper operation of the system, and must be in place and connected to the system before the supply
cables are connected.
1.5.1 Safety Ground
The safety ground is a two-part system – the utility service ground and the power system ground.
Utility Service Ground
As a minimum requirement for the protection of equipment, the local utility service must provide a low-impedance path for fault current return to Earth. This must meet or exceed the requirements of the US National
Electrical Code or the Canadian Electrical Code.
Power System Ground
The power system ground consists of a low-impedance connection between the enclosure and an Earth
Ground, which must be located at least six feet away from the utility earth connection.
1.5.2 Lightning Strike Ground
Lightning strikes, grid switching, or other power surges on the power line and/or communications cable
can cause high-energy transients that can damage the power or communications systems. Without a lowimpedance path to the ground, the current will travel through wires of varying impedance, which can produce
damaging high voltages. The best method to protect the system from damage is to divert these unwanted
high-energy transients along a low-impedance path to the ground.
See section 7.7 for a description of the surge suppression modules installed in the AMPS80 HP.
026-069-B0 Rev G
9
2. Product Description
The Alpha Modular Power System 80HP (AMPS80 HP) is a unique, high performance AC and hybrid AC/
DC power system that is ideally suited to provide highly reliable back-up power to cable headend, telecom or
server room facilities.
The AMPS80 HP features hot swappable 2.5 kVA/2.0 kW inverter modules and optional 1.8 kW rectifier modules that are the building blocks of a highly reliable power system. A smart, unified controller with an integrated Ethernet/SNMP monitors and manages both inverter and rectifier modules through a web based GUI and
a local LCD touch screen. The AMPS80 HP is designed to be installed in a climate-controlled environment
where ambient temperatures are between -20°C to 40°C.
2.1 Theory of Operation
Each AMPS module includes a reliable 48 VDC to 120 VAC inverter as well as an AC-to-DC rectifier. When
AC Mains is available, AC power is converted to a high voltage DC bus, which is then converted back to
AC. In this high performance (HP) mode, AMPS delivers fully conditioned, line-regulated telecom-grade AC
power with 94% system efficiency.
AC
Mains
Telecom Grade
AC Output
DC In
CAN bus external
communication
DSP
Dual redundant
communication and
synchronization
between modules
When AC Mains is unavailable, DC battery power is converted to AC with zero transfer time. An intelligent
high voltage DC bus decides when to draw power, and how much power to draw, from AC or DC source.
During AC input brownout condition, output power is supplemented by battery power.
AC to DC input transfer can also be automatically triggered via the system controller to enable advanced
operation such as utility peak shaving.
In case of a fault, advanced DSP controls allow the AMPS module to isolate itself, while the rest of the system
continues to power the load (with reduced output).
10
026-069-B0 Rev G
Boost
AC
Mains
400 Vdc
DC In
CAN bus external
communication
DSP
Telecom Grade
AC Output
Dual redundant
communication and
synchronization
between modules
AMPS modules also have a ‘Boost’ over-current feature with 10 times the rated current capacity for 20ms, allowing it to trip breakers downstream, thus protecting the load.
2.1.1 AC or DC input priority
The user can choose either AC or DC input priority. If AC priority is chosen, the AMPS80 HP acts more
like an on-line, double conversion UPS. If AC commercial power is available, this power is filtered twice
and passed to the AC output. If the AC commercial power fails, the DC converter simply takes over and
supplies the power from the batteries.
If DC priority is chosen, the AMPS80 HP acts more like an Inverter with AC bypass function. Normally,
power is drawn from the batteries. If DC power fails, the AC-DC converter takes over, still providing regulated and filtered power to the load.
026-069-B0 Rev G
11
2.2 System Components
The AMPS80 HP consists of a number of individual subsystems designed to work together to provide highly
reliable, filtered power in support of the load. A typical system contains the following:
1. Main Wiring Access Panel: AC input and output as
well as Safety Extra-Low Voltage (SELV) DC battery
connections are accessed through the front panel and
fed through the opening at the top of the rack.
1
2. Rectifier AC Input Breakers (optional): Provide a
means to switch off the rectifiers independently of the
inverters.
3. Inverter AC Input Breaker: Serves as the main
disconnect for the inverter AC input.
2
4. Maintenance Bypass Switch (MBS) (optional): Can
be used to route power directly from the AC input to
the AC output, bypassing the inverter modules.
3
4
5. Inverter AC Output Breaker: Serves as the main
disconnect for the inverter AC outputs.
5
6. CXC Unified System Controller with integrated
Ethernet/ SNMP: Monitors and manages both
inverter and rectifier modules through a web-based
GUI and local LCD touch screen. This is a SELV
controller.
6
7
8
7. DC Input Breakers (optional): Provide SELV DC
power to each Inverter module.
8. T2S Inverter Control Card: Communicates with the
CXC Unified controller. This is a SELV Controller.
9. Inverter Modules and shelves: Up to 9 shelves
containing 4 hot-swappable 2500 VA / 2000 W inverter
modules on each shelf.
9
10. Rectifier Modules and shelves (optional): Two
shelves contain up to four hot-swappable 1800 W
rectifier modules on each shelf. The rectifiers are used
as the SELV DC battery charging component of a
hybrid system.
Each rectifier shelf is only connected to one of the DCbattery feeds: the top shelf to DC1, and the bottom
rectifier shelf is connected to DC4. In a system with
four independent battery feeds, two of these battery
banks will not be charged from the AMPS80 HP
rectifiers.
10
12
026-069-B0 Rev G
2.3 Rear Components
Two breakers are mounted at the rear, upper corners of the cabinet – one is a breaker for DC1 to the CXCR
controller and the other for the signal wiring and DC4 to the CXCR controller. (DC4 is provides backup power
for the controller if DC1 fails.)
Breaker for
DC1 to the
controller
Breaker for signal
wiring and DC4 to
the controller
Front
Figure 1 — Controller breakers on top of the AMPS80
026-069-B0 Rev G
13
2.4 Module Location Relative to System Wiring
2.4.1 Split-phase or 120/208V 2-Pole systems
Refer to section 3 for an explanation of the "split-phase" and "2-pole" terminology.
•
20 kVA, see Table F on page 24
•
40 kVA, see Table E on page 23
Optional DC
breaker inputs
DC 1
DC 3
DC 2
DC feeds for inverters
DC 4
Blank panel
Inverters for AC phase 1 (L1)
Inverters for AC phase 2 (L2)
Blank panels
Rectifier output to DC1
Rectifier output to DC4
Figure 2 — 20 kVA split-phase or 120/208V 2-pole system
14
026-069-B0 Rev G
DC 1
Optional DC
breaker inputs
DC 3
DC 2
DC 4
DC feeds for inverters
Inverters for AC phase 1 (L1)
Inverters for AC phase 2 (L2)
Blank panels
Rectifier output to DC1
Rectifier output to DC4
Figure 3 — 40 kVA, split-phase or 120/208V 2-pole system
026-069-B0 Rev G
15
2.4.2 3-phase systems
Optional DC
breaker inputs
DC 1
DC 3
DC 2
DC feeds for inverters
DC 4
Inverters for AC phase 1 (L1)
Inverters for AC phase 2 (L2)
Inverters for AC phase 3 (L3)
Rectifier output to DC1
Rectifier output to DC4
Figure 4 — 75 kVA, 3-phase systems
16
026-069-B0 Rev G
Optional DC
breaker inputs
DC 1
DC 3
DC 2
DC feeds for inverters
DC 4
Blank panel
Inverters for AC phase 1 (L1)
Inverters for AC phase 2 (L2)
Inverters for AC phase 3 (L3)
Blank panels
Rectifier output to DC1
Rectifier output to DC4
Figure 5 — 30 kVA, 3-phase system
026-069-B0 Rev G
17
3. AC and DC Power Configurations
This section lists the power configurations available with the AMPS80 system and defines the terminology
used throughout this manual.
3.1 Power System Configuration Terminology
3.1.1 120Vac Single Phase
A single phase system is 120Vac from L1 to N (neutral).
L1
3.1.4 120/240Vac Split Phase
120V
The term 120/240Vac SPLIT PHASE is used
throughout this manual to identify the “3-wire/
2 legs from a single phase supply” configuration shown in Figure 6.
240V
120V
N
Figure 6 — Split Phase from a Single phase supply
L2
3.1.2 120/208Vac 2-Pole
L1
The term 120/208 2-POLE is used throughout this manual to identify the “2-pole from a
3-phase supply” configuration such as L2 to
L3 shown in Figure 7.
208V
L2
12
0V
0V
12
3.1.3 3-Phase
208V
208V
120V
Each phase conductor carries the same
current, 120 degrees out of phase with each
other as shown in Figure 7.
N
L3
Figure 7 — 2-Pole from a 3-phase supply
3.1.5 120/208Vac 3-Phase
Each phase conductor is 120 degrees out of phase with the other, as shown in Figure 7. All three phases (3pole) plus the neutral are in use.
18
026-069-B0 Rev G
3.2 3-Phase Systems – Recommended AC and DC Breakers
NOTE:
The recommendations in Table A are for reference only. A registered professional engineer
must review and approve or modify these recommendations in compliance with applicable
national and local electrical and building codes.
With MBS
AMPS80-3-67,
Without rectifiers
With MBS
With rectifiers
AMPS80-3-75-H2,
MBS
With MBS
Without rectifiers
AMPS80-3-75,
MBS
Without MBS
With rectifiers
120/208 V
120/208 V
120/208 V
120/208 V
Full load AC input current per phase
177 A
227 A
223 A
273 A
200 A
AC input poles & wiring
4w+G
4w+G
4w+G
4w+G
4w+G
Wiring
3Ф Wye
3Ф Wye
3Ф Wye
3Ф Wye
3Ф Wye
225 A
300 A
300 A
350 A
250 A
2x 1/0
2x 3/0
2x 3/0
2x 4/0
2x 2/0
Recommended
AC input breaker/fuse2
Total maximum AC output
output
AMPS80-3-75-H2
120/208 V
Recommended
AC input wire size
90ºC copper1
AC
Without MBS
AC input voltage
AC
input
Without rectifiers
Model
AMPS80-3-75
Table A — 75 kVA, 3-phase systems (AMPS80-3-75 series), single AC feed
75 kVA, 60 kW 75 kVA, 60 kW 75 kVA, 60 kW 75 kVA, 60 kW 67 kVA, 60 kW
AC output voltage
120/208 V
120/208 V
120/208 V
120/208 V
120/208 V
AC output poles & wiring
4w+G
4w+G
4w+G
4w+G
4w+G
Wiring
3Ф Wye
3Ф Wye
3Ф Wye
3Ф Wye
3Ф Wye
AC output current per phase
208 A
208 A
208 A
208 A
186 A
Installed inverter input
& output circuit breaker
250 A
250 A
250 A
250 A
225 A
Recommended
AC output wire size
90ºC copper1
2x 2/0
2x 2/0
2x 3/0
2x 4/0
2x 2/0
AC input & output
Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping screw to
connection 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG wire.
terminals
Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5 current
Note 1 carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor applied when
needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input wire size.
Note 2
Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized
appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18
kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for
3Ф systems with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor
corrected, AC wiring solely to the inverters does not require double neutral wiring.
026-069-B0 Rev G
19
NOTE:
The recommendations in Table B are for reference only. A registered professional engineer
must review and approve or modify these recommendations in compliance with applicable
national and local electrical and building codes.
Table B — 75 kVA, 3-phase systems (AMPS80-3-75 series), dual AC feeds
Model
Dual feed with separate AC
feed for inverters/MBS and
rectifiers
AC
input
AC
output
AMPS80-3-75-H2
AMPS80-3-75-H2,
MBS
AC feed
Inverter feed
Rectifier feed
Inverter/MBS
feed
Rectifier feed
AC input voltage
120/208 V
208 V
120/208 V
208 V
Full load AC input current per phase
177 A
50 A
223 A
50 A
AC input poles & wiring
4w+G
4w+G
4w+G
4w+G
Wiring
3Ф Wye
3Ф Wye
3Ф Wye
3Ф Wye
Recommended
AC input breaker/fuse2
225 A
70 A
300 A
70 A
Recommended
AC input wire size
90ºC copper1
2x 1/0 or 300 kcmil
#4 AWG
2x 3/0
#4 AWG
Total maximum AC output
75 kVA, 60 kW
75 kVA, 60 kW
AC output voltage
120/208 V
120/208 V
AC output poles & wiring
4w+G
4w+G
Wiring
3Ф Wye
3Ф Wye
AC output current per phase
208 A
208 A
Installed inverter input
& output circuit breaker
250 A
250 A
Recommended
AC output wire size
90ºC copper1
2x 2/0
2x 3/0
Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping
AC input & output
screw to 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG
connection terminals
wire.
Rectifier connection Box lugs are rated for either Aluminum or Copper wire, 2/0 to #6 AWG. Fasten clamping screw to 14
terminals N-m (120 in-lbs)
20
Note 1
Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5
current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor
applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input
wire size.
Note 2
Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized
appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to
18 kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS)
for 3Ф systems with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power
factor corrected, AC wiring solely to the inverters does not require double neutral wiring.
026-069-B0 Rev G
NOTE:
The recommendations in Table C are for reference only. A registered professional engineer
must review and approve or modify these recommendations in compliance with applicable
national and local electrical and building codes.
Single
Single
Single
Single
AC input voltage
120/208 V
120/208 V
120/208 V
120/208 V
Full load AC input current per phase
71 A
121 A
88 A
138 A
AC input poles & wiring
4w+G
4w+G
4w+G
4w+G
Wiring
3Ф Wye
3Ф Wye
3Ф Wye
3Ф Wye
90 A
150 A
125 A
175 A
Recommended
AC input wire size
90ºC copper1
#2
3/0
2/0
4/0
Total maximum AC output
30 kVA, 24 kW
30 kVA, 24 kW
30 kVA, 24 kW
30 kVA, 24 kW
AC output voltage
120/208 V
120/208 V
120/208 V
120/208 V
AC output poles & wiring
4w+G
4w+G
4w+G
4w+G
Wiring
3Ф Wye
3Ф Wye
3Ф Wye
3Ф Wye
AC output current per phase
83 A
83 A
83 A
83 A
Installed inverter input
& output circuit breaker
125 A
125 A
125 A
125 A
Recommended
AC output wire size
90ºC copper1
2/0
2/0
2/0
4/0
AC
input
Recommended
AC input breaker/fuse2
AC
output
MBS
AMPS80-3-30-H2
Feed
Model
AMPS80-3-30,
AMPS80-3-30
AMPS80-3-30-H2,
MBS
Table C — 30 kVA, 3-phase systems (AMPS80-3-30...), single AC feed
Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping
AC input & output
screw to 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG
connection terminals
wire.
Note 1
Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5
current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor
applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC
input wire size.
Note 2
Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized
appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18
kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф
systems with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected,
AC wiring solely to the inverters does not require double neutral wiring.
026-069-B0 Rev G
21
3.3 120V/240V Split Phase or 120/208V 2-Pole Systems
NOTE:
The recommendations in Table D are for reference only. A registered professional engineer
must review and approve or modify these recommendations in compliance with applicable
national and local electrical and building codes.
Table D — 40 kVA, split-phase, 2-pole systems (AMPS80-2-40 series), single AC feed
Model
AC
input
AC
output
AMPS80-2-40
AMPS80-240-H2
AMPS80-2-40,
MBS
AMPS80-240-H2, MBS
Feed
Single
Single
Single
Single
AC input voltage
120/208 V
or 120/240 V
120/208 V
or 120/240 V
120/208 V
or 120/240 V
120/208 V
or 120/240 V
Full load AC input current per phase
148 A
225 A
179 A
256 A
AC input poles & wiring
3w+G
3w+G
3w+G
3w+G
Wiring
2-pole
2-pole
2-pole
2-pole
Recommended
AC input breaker/fuse2
200 A
300 A
225 A
350 A
Recommended
AC input wire size
90ºC copper1
250 kcmil
2x 3/0
2x 1/0 or 300 kcmil
2x 4/0
Total maximum AC output
40 kVA, 32 kW
40 kVA, 32 kW
40 kVA, 32 kW
40 kVA, 32 kW
AC output voltage
120/208 V
or 120/240 V
120/208 V
or 120/240 V
120/208 V
or 120/240 V
120/208 V
or 120/240 V
AC output poles & wiring
3w+G
3w+G
3w+G
3w+G
Wiring
2-pole
2-pole
2-pole
2-pole
AC output current per phase
167 A
167 A
167 A
167 A
Installed inverter input
& output circuit breaker
250 A
250 A
250 A
250 A
Recommended
AC output wire size
90ºC copper1
2x 2/0
2x 2/0
2x 2/0
2x 4/0
AC input & output Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping screw
connection
terminals to 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG wire.
22
Note 1
Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5
current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor
applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input
wire size.
Note 2
Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized appropriately
for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA short circuit current.
Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems with significant nonlinear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring solely to the inverters
does not require double neutral wiring.
026-069-B0 Rev G
NOTE:
The recommendations in Table E are for reference only. A registered professional engineer
must review and approve or modify these recommendations in compliance with applicable
national and local electrical and building codes.
Table E — 40 kVA, split-phase, 2-pole systems (AMPS80-2-40 series), dual AC feeds
Model
Dual feed with separate AC
feed for inverters/MBS and
rectifiers
AMPS80-2-40-H2
AMPS80-2-40-H2,
MBS
AC feed
Inverter feed
Rectifier feed
Inverter/MBS feed
Rectifier feed
AC input voltage
120/208 V
or 120/240 V
208 V or 240 V
120/208 V
or 120/240 V
208 V
or 240 V
Full load AC input current per phase
148 A
77 A
179 A
77 A
AC input poles & wiring
3w+G
3w+G
3w+G
3w+G
Wiring
2-pole
2-pole
2-pole
2-pole
Recommended AC
input breaker/fuse2
200 A
100 A
225 A
100 A
Recommended
AC input wire size
90ºC copper1
250 kcmil
#1
2x 1/0 or 300 kcmil
#1
AC
input
AC
output
Total maximum AC output
40 kVA, 32 kW
40 kVA, 32 kW
AC output voltage
120/208 V or 120/240 V
20/208 V or 120/240 V
AC output poles & wiring
3w+G
3w+G
Wiring
2-pole
2-pole
AC output current per phase
167 A
167 A
Installed inverter input
& output circuit breaker
250 A
250 A
Recommended
AC output wire size
90ºC copper1
2x 2/0
2x 1/0
Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping
AC input & output
screw to 375 in-lbs (42 N-m) for #1 AWG to 350 kcmil wire or 200 in-lbs (23 N-m) for #6 to #2 AWG
connection terminals
wire.
Rectifier connection Box lugs are rated for either Aluminum or Copper wire, 2/0 to #6 AWG. Fasten clamping screw to 14
terminals N-m (120 in-lbs)
Note 1
Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5
current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor
applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input
wire size.
Note 2
Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized
appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA short
circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems with
significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring solely
to the inverters does not require double neutral wiring.
026-069-B0 Rev G
23
NOTE:
The recommendations in Table F are for reference only. A registered professional engineer
must review and approve or modify these recommendations in compliance with applicable
national and local electrical and building codes.
Table F — 20 kVA, split-phase, 2-pole systems (AMPS80-2-20 series),
single AC feed
Model
AC
input
AC
output
AMPS80-2-20
AMPS80-220-H2
AMPS80-220, MBS
AMPS80-220-H2, MBS
Feed
Single
Single
Single
Single
AC input voltage
120/208 V
or 120/240 V
120/208 V
or 120/240 V
120/208 V
or 120/240 V
120/208 V
or 120/240 V
Full load AC input current per phase
71 A
148 A
89 A
166 A
AC input poles & wiring
3w+G
3w+G
3w+G
3w+G
Wiring
2-pole
2-pole
2-pole
2-pole
Recommended
AC input breaker/fuse2
90 A
200 A
125 A
225 A
Recommended
AC input wire size
90ºC copper1
#2
250 kcmil
2/0
2x 1/0 or 300 kcmil
Total maximum AC output
20 kVA, 16 kW
20 kVA, 16 kW
20 kVA, 16 kW
20 kVA, 16 kW
AC output voltage
120/208 V
or 120/240 V
120/208 V
or 120/240 V
120/208 V
or 120/240 V
120/208 V
or 120/240 V
AC output poles & wiring
3w+G
3w+G
3w+G
3w+G
Wiring
2-pole
2-pole
2-pole
2-pole
AC output current per phase
83 A
83 A
83 A
83 A
Installed inverter input
& output circuit breaker
125 A
125 A
125 A
125 A
Recommended
AC output wire size
90ºC copper1
2/0
2/0
2/0
2x 1/0 or 300 kcmil
Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping
AC input & output
screw to 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG
connection terminals
wire.
24
Note 1
Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5
current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor
applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input
wire size.
Note 2
Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized
appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA
short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems
with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring
solely to the inverters does not require double neutral wiring.
026-069-B0 Rev G
3.4 DC Fuse/Breaker
Alpha recommends using fuses instead of breakers because they provide better fault protection.
NOTE:
The recommendations in Table G are for reference only. A registered professional engineer
must review and approve or modify these recommendations in compliance with applicable
national and local electrical and building codes.
AMPS80-3-30
AMPS80-3-30-H2
AMPS80-2-40
AMPS80-2-40-H2
AMPS80-2-20
AMPS80-2-20-H2
Maximum DC Input wattage
Maximum DC Input Current
@ 48 Vdc, full load
DC input current @ 40 V
DC
110% load
input
Maximum DC input breaker
Single DC
feed
Recommended
minimum DC fuse/ Dual DC
breaker rating
feed
(100% rated, per
feed)
Quad DC
feed
026-069-B0 Rev G
67 kW
27 kW
36 kW
18 kW
1396 A
563 A
750 A
375 A
1843 A
743 A
990 A
495 A
AMPS80-3-75
Model
AMPS80-3-75-H2
Table G — Recommended DC fuse/breaker
2500 A, maximum 50 kA SCC
2000 A
800 A
1000 A
500 A
1200 A
400 A
500 A
250 A
600 A
200 A
250 A
125 A
25
3.5 AMPS80 DC Feed Options
One
Two
Four
AMPS80-2-40
Max Load Power
AMPS80-2-40
Redundancy Power
AMPS80-3-30
Max Load Power
AMPS80-3-30
Redundancy Power
1. Single feed – no
DCB
AMPS80-3-75
Redundancy Power
Feed Option
N+0,
75kVA
60kW
40kVA
32kW
30kVA
24kW
N+1,
67.5kVA
54kW
35kVA
28kW
22.5kVA
18kW
N+2
60kVA
48kW
30kVA
24kW
15kVA
12kW
Possible Output
Redundancy
# of
Independent
DC Sources
AMPS80-3-75
Max Load Power
Table H — DC Feed Option – Max Load Power and Redundancy Power
N+3
52.5kVA
42kW
25kVA
20kW
7.5kVA
6 kW
2. Single Feed with
DC Breaker option
N+N
37.5kVA
30kW
20kVA
16kW
15kVA
12kW
3. Dual Feed
N+N
37.5kVA
30kW
20kV
16kW
15kVA
12kW
4. Quad Feed
N+2
60kVA
48kW
30kVA
24kW
15kVA
12kW
N+3
52.5kVA
42kW
25kVA
20kW
7.5kVA
6 kW
5. Dual Feed
N+N
37.5kVA
30kW
20kV
16kW
15kVA
12kW
6. Quad Feed
N+2
60kVA
48kW
30kVA
24kW
15kVA
12kW
N+3
52.5kVA
42kW
25kVA
20kW
7.5kVA
6 kW
N+N
37.5kVA
30kW
20kVA
16kW
15kVA
12kW
22.5kVA
18kW
7. Quad Feed
N+1,
N+2
N+3
26
30kVA
52.5kVA
24kW
42kW
026-069-B0 Rev G
3.6 How to Configure Inverters in AC Input Groups, AC Output
Groups and DC Input Groups
The following sections show how to distribute the inverters among the phases and also suggests how to distribute the DC input to the inverters.
3.6.1 AC Input Groups/ AC Output Groups
The CXC controller provides an interface to assign inverters to phases (Inverters > Group Mapping).
The logical approach is to match the configuration of inverters in the AC Input Group to the configuration of
inverters in the AC Output Group as shown. See Figure 9 also for three Input Groups.
Turn off the inverters to configure
AC Output Groups by clicking the
green power icon.
These groups of inverters can then be monitored as a unit in the View Group Status screen.
Figure 8 — Monitotring AC Input Groups, AC Output Groups and DC Input Groups
026-069-B0 Rev G
27
3.6.2 DC Input Groups
The configuration of the DC input to the inverters provides several different ways to monitor DC input power
and input current. The number of DC Input Groups (maximum eight) is set in the Inverters > Group Mapping
screen and monitored as a unit in the View Group Status screen. The following table gives examples of possible configurations.
Monitoring
DC Source
Bulk
Assign all inverters to DC Input Group 1.
Dual Input
For example:
Assign all the inverters in column 1 & 2 to DC Input Group 1.
Assign all the inverters in shelves 3 & 4 to DC Input Group 2.
Quad Input
For example:
Assign all the inverters in column 1 to DC Input Group 1.
Assign all the inverters in shelves 2 to DC Input Group 2.
Assign all the inverters in column 3 to DC Input Group 3.
Assign all the inverters in shelves 4 to DC Input Group 4.
Figure 9 — Inverter mapping for AC and DC Groups
28
026-069-B0 Rev G
4. System Pre-Installation
4.1 Site Selection
The AMPS80 HP is designed to be installed in a controlled environment, sheltered from rain, excessive dust
and other contaminants.
Consider both the floor loading and the physical space required for the AMPS80 HP power system and the
batteries.
4.1.1 Floor Plan Layout
Sufficient free space must be provided at the front and rear of the power system to meet the cooling requirements of the inverters and rectifiers(if installed) in the power system and to allow easy access to the power
system components.
Consider the following before selecting a location for the AMPS80 HP power system
•
Structure of building able to support the additional weight
•
Enough space to meet requirements for access
•
Enough space to meet cooling requirements of the rectifiers
•
Adequate space to do the install
•
Route that equipment will take through the building to reach the site
•
Check and record distances to load
•
Check and record distances to AC power source
•
Check and record distances to batteries/DC power source
•
Understand the full load on the DC system
•
Window for working hours and other similar restrictions
•
How much and what kind of prep work can be done in advance
xx
Reinforce floors
xx
Install distribution panels
xx
Install cable racks
xx
Run wiring
xx
Minimize cable lengths (cost)
xx
Minimize cable flow and congestion
026-069-B0 Rev G
29
4.2 Recommended Installation Layout
NOTE:
In the unlikely event that internal components need repair, 1 m access around the unit is
recommended.
Minimum required clearances around the cabinet:
•
Rear: 12" (30 cm) minimum, 18" (46 cm) recommended
•
Sides: no clearance required.
However for 75 kVA hybrid systems and systems with TVSS option, 36" (100 cm) clearance to the left
side of the cabinet is strongly recommended for ease of service
•
Top: 12" (30 cm)
•
Front: 36" (100 cm)
OTHER EQUIPMENT OR WALL
12in [30 cm] minimum, 18in 46cm] recommended
for adequate ventilation
Rear
OTHER EQUIPMENT
OR WALL
[1 m]
3 Feet
OTHER EQUIPMENT
OR WALL
The 1m recommended
clearance only applies to 75kVA
hybrid systems with TVSS
option (for ease of service).
Front
6.0in [15cm]
Minimum distance
for ventilation
Minimum distance
for service
[1 m]
3 Feet
Figure 10 — Installation layout and clearances
30
026-069-B0 Rev G
4.3 Option for DC input into AMPS80
Kit #7400448-001 contains eight copper brackets 5901374-001, which once installed provide lug
connections on both sides of the copper bracket. See Figure 11.
Figure 11 — Top front view showing installing of brackets in kit #7400448-001
026-069-B0 Rev G
31
4.4 Wiring for Generator and/or External MBS
Refer to Figure 12 for schematic of a system with a generator and/or external MBS.
Figure 12 — System Schematic with Generator and MBS
32
026-069-B0 Rev G
4.5 Transporting the Cabinet
The cabinet is shipped upright on a 122 cm x 122 cm (48" x 48") pallet and can be transported to the installation site either by forklift or overhead crane. The empty cabinet weighs approximately 270 kg (595 lb).
The height of the rack, including pallet and shipping material is 234 cm (92"). When tilting the rack to fit
through doors, tilt the rack toward the back and ensure that it is not subjected to sudden shock.
Use the supplied lifting eyes to lift the cabinet from the top. The lifting eyes are accessible by removing the
top sheet of wood from the shipping crate.
Figure 13 — Arrangement of lifting eyes on top of cabinet
026-069-B0 Rev G
33
4.6 Unpacking Instructions
WARNING!
The AMPS80 HP rack weighs 270 kg / 595 lb. Care must be taken to ensure that it does not
topple over.
1. Remove 6 screws from top panel to
access AMPS80 HP lifting eyes.
Use Phillips head
tool to remove
2. Remove 4 screws from each top 2 x 4
and 6 screws from each wooden side
piece to gain access to removal of the
front and rear wooden frames.
Lifting eyes
Use Phillips head
tool to remove
3. Remove 3 screws from the front
and rear wooden frames.
4. Remove AMPS80 HP metal side panels to gain
access to 4 interior lag bolts. Remove 4 lag bolts to
allow removal of the AMPS80 HP from the pallet.
Use Phillips head
tool to remove
A
Use 9/16" wrench or
socket to remove
34
026-069-B0 Rev G
4.7 Anchoring the Cabinet
The cabinet must be fixed in place by means of anchor bolts. In areas prone to seismic events, use anchors
rated for the appropriate Seismic zone.
185.0mm
[7.28in]
647.2mm
[25.48 in]
277.2mm
[10.91in]
12.7mm
x4
[0.50in]
185.0mm
[7.28in]
25.4mm
[1.00in]
[21.51in]
546.4mm
597.2mm
[23.51in]
25.4mm
[1.00in]
Figure 14 — Mounting hole pattern
026-069-B0 Rev G
35
4.7.1 Optional Conversion from Single to Dual AC Feed
The AMPS80 HP system is preconfigured from the factory for a single AC feed per phase for inverters and
rectifiers if present. You have the option to convert to dual feed—see (Figure 15 and Figure 16
AMPS80 HP
AC Output
AC Input
Inverters
Rectifier
(optional)
Make before break
manual bypass
switch (optional)
DC breakers
(optional)
Battery
Connection
Figure 15 — Single AC feed
AMPS80 HP
Inverter AC Input
AC Output
Inverters
Make before break
manual bypass
switch (optional)
Rectifier AC Input
Rectifier
(optional)
Battery
Connection
Figure 16 — Dual AC Feed
36
026-069-B0 Rev G
Procedure to remove the internal rectifier powering wiring:
Have the following tools on hand:
•
Phillips screw driver
•
3/8” wrench or socket
•
3/16” hex key
WARNING!
Before removing the wiring access panel, make sure all power to the unit is switched off,
tagged and locked.
STEP 1: Remove the
wiring access panel.
STEP 2: Locate the
rectifier terminal block
Figure 17 — Rectifier terminal block
026-069-B0 Rev G
37
STEP 3: Remove the internal rectifier powering wires before installing the separate rectifier feed
Disconnect with a 3/16" hex key
Disconnect the 10-32 nut with a 3/8"
wrench or socket
Once the internal rectifier powering wires have been removed, install the external rectifier powering wires into
the rectifier terminal block—see Figure 17.
38
026-069-B0 Rev G
4.7.2 AMPS80 HP with External Maintenance Bypass Switch
These diagrams show the logical internal connections. They are not a detailed representation of the actual
internal system wiring.
AMPS80 HP Installation Diagram for
single AC input feed for the
Inverter/MBS and Rectifiers
MAIN
Generator
Distribution
Panel
External
Maintenance
Bypass
Switch
AMPS80 HP
AC Output
AC Input
Inverters
Automatic
Transfer
Switch Break
Before Make
Dedicated
UPS
Distribution
Panel
Make before break
manual bypass
switch (optional)
DC breakers
(optional)
Rectifier
(optional)
Critical
Systems
Power
UPS
BYPASS
Battery
Connection
Utility
Figure 18 — Representative system wiring for AMPS inverter or hybrid system with MBS with single AC input feed.
AMPS80 HP Installation Diagram for
separate AC input feeds for the
Inverter/MBS and Rectifiers
MAIN
Distribution
Panel
Generator
External
Maintenance
Bypass
Switch
AMPS80 HP
Inverter AC Input
AC Output
Inverters
Automatic
Transfer
Switch
Dedicated
UPS
Distribution
Panel
Rectifier AC Input
Rectifier
(optional)
DC breakers
(optional)
Critical
Systems
Power
UPS
Make before break
manual bypass
switch (optional)
BYPASS
Battery
Connection
400A for AMPS80-3-75
AMPS80-2-40
Utility
200A for AMPS80-3-30
AMPS80-2-20
Figure 19 — Representative system wiring for AMPS inverter system with independent AC input feed for MBS
026-069-B0 Rev G
39
5. System Installation
The AMPS80 HP system is pre-configured from the factory for a single AC feed per phase for inverters, a
maintenance bypass switch, and rectifiers if present.
The installer is responsible for connecting the following:
•
Utility input to the system (120 V line to neutral)
•
Battery strings
•
System to the load
•
Chassis and battery return to the reference ground
Reference Notes:
•
If the AC input neutral is connected, remove the neutral to ground bonding wire. The neutral to ground
wire is provided for systems without AC Input connections in which case the inverter output is considered a separately derived source and the AC output neutral must be connected to earth ground.
•
In a 3-phase system equipped with an internal maintenance bypass switch and a load with a significant
distortion power factor, it is strongly recommended to provide the AC input and AC output connection
with a double neutral feed. Non-power factor corrected IT power supplies with rectified-capacitive loads
can contain high levels of 3rd harmonics that are created in such 3-phase systems. The current in the
neutral line can easily be twice the current in the line currents.
•
DC tie bars are supplied to allow dual A/B battery feed (DC1 tied to DC2 and DC3 tied to DC4) or single
battery feed (DC1 - 4 are tied)
•
If the system is equipped with the optional rectifiers, each rectifier shelf in a hybrid system is only connected to one of the DC- battery feeds: the top shelf to DC1, and the bottom rectifier shelf is connected
to DC4. In a system with four independent battery feeds, two of these battery banks will not be charged
from the AMPS80 HP rectifiers. When using two independent A/B feeds, DC1 should be tied to DC2 and
DC3 tied to DC4 at the AMPS80 HP DC connection points. Tie bars are provided.
* Connections and components relating to L3 are only present for 120/208 V, 3-phase systems.
** Connections and components relating to L2 are only present for 120/240 V split phase and 120/208 V
3-phase systems.
40
026-069-B0 Rev G
Carefully review the following schematic and installation notes before proceeding with the installation.
5
6
8
Figure 20 — Battery and power connections
Installation notes:
1. All wiring must be in accordance with applicable electrical codes.
2. All external wiring by others.
3. Inverter main input must always include a neutral connection.
4. Power and control cables must be in separate conduits.
5. N-G shorting jumper is factory-installed for inverter-only systems. Remove if AC input ground is
connected (#5 on Figure 20).
6. Where rectifier is fed separately from AC (#6 on Figure 20), remove these wires during installation—see
section 4.7.1.
7. L3 is only used with 3-phase systems.
8. Four independent battery strings can be connected. Shorting jumpers are provided for single or dual DC
feed ((#8 on Figure 20).
WARNING!
To maintain the security of all SELV Circuits in the AMPS80, connect to other equipment of
the same circuit type: signaling/alarm circuits, emergency power off (EPO) circuits, relay
contacts, Ethernet or CANBUS.
026-069-B0 Rev G
41
5.1 Input/Output Cabling Overview
Connection points are accessed from the top of the unit. A protective panel partitions the AC and DC connections.
DC1
DC2
DC3
DC4
DC connections
Protective panel between
AC & DC connections
Ground
bus
AC output ground
AC connections
AC input ground
Frame ground
Figure 21 — Top view of AMPS80 showing AC and DC connection partitions
5.1.1 Wiring Gauge
The required gauge of the AC input, DC+/DC- input and AC output cabling is determined by the current rating, circuit breaker rating, typical ambient temperatures and the applicable local electrical codes. Typically
the AC input and standard AC output is 6 wires (L1, L2, and L3, N, N, G) up to 350 kcmil THHW or RW90
type cable that connects to the AMPS80 HP system with trade size up to 2.5" conduit.
5.1.2 Grounding
Refer to Figure 21 for connection points for frame ground, AC input ground and AC output ground.
42
026-069-B0 Rev G
5.2 AC Connections
•
Access to connection points is provided from the front of the system rack.
•
AC wires enter the cabinet through the top.
•
AC input and AC output wires are connected to box lugs rated for 350 kcmil to #6 AWG.
AC input lugs
L1 left
L2 middle
L3 right
AC input
ground
Industrial grade
surge suppression modules.
AC output lugs
L1 left
L2 middle
L3 right
AC neutral
connection
points
Rectifier terminal
block (see Figure
17 for details
Earth ground bus
Optional rectifier
AC input breakers
AC output
ground
Figure 22 — AC Connections
5.1.3 Grounding
N-G shorting jumper is factory-installed for inverter-only systems.
Remove if AC input ground is connected (#5 on Figure 20).
026-069-B0 Rev G
43
5.3 DC Connections
•
Access to connection points is provided from the front of the system rack.
•
DC wires enter the cabinet either through the top or the bottom of the cabinet.
•
A low voltage disconnect should be provided with the battery system.
DC+ bus: DC1, DC2, DC3, DC4 input connectors shown with one 4DC tie bar
DC- bus: DC1,
DC2, DC3, DC4
Figure 23 — DC connections - top view
5.3.1 DC Battery Cabling
DC battery cable terminations are designed for two-hole spade lugs crimped to
the cabling, then attached to the bus bars.
Input cabling
3/8" or 1/2" hardware
Depending upon the gauge of the input
wiring used, the connections may be made
either singly or with two back-to-back lugs
per mounting hole.
Each bar (DC+, DC-) can accept seven
2-hole ½" mounting lugs on 1-3/4" centers
or seven 2-hole 3/8" lugs on 1" centers.
Torque specifications for DC wiring (3/8"
bolts that attach the DC lugs at the back
of the DC distribution box) are 190 – 240
inch/lbs (21.5 – 27.1 N-m).
Tie bar
Bus bar
Figure 24 — Cabling and hardware arrangement
44
026-069-B0 Rev G
5.3.2 DC Connection Configurations
CAUTION!
A tie bar is only recommended for single feed installations. The use of a tie bar in a two
feed installation can cause current loops.
If the system is equipped with optional rectifiers, each rectifier shelf in a hybrid system is only connected to
one of the DC- battery feeds:
•
Top rectifier shelf to DC1
•
Bottom rectifier shelf to DC4
In a system with four independent battery feeds, two of these battery banks will not be charged from the
AMPS80 HP rectifiers. When using two independent A/B feeds, DC1 should be tied to DC2 and DC3 tied to
DC4 at the AMPS80 HP DC connection points. Tie bars are provided.
Outside of right side
of AMPS system
Outside of left side
of AMPS system
8.3in
[211mm]
3.0in
[76mm]
3.6in
[92mm]
3.0in
[76mm]
5.4in
[137mm]
Top of
AMPS system
5.5
[141]
8.9in
[227mm]
3.0in
[76mm]
DC+ ROW
3.0in
[76mm]
DC- ROW
7.4in
[187mm]
3.0in
[76mm]
3.6in [92mm]
3.0in
[76mm]
6.3in
[161mm]
Figure 25 — DC connection dimensions – front view
026-069-B0 Rev G
45
Single battery string
Two 4DC joining plates are supplied with the dimensions shown in Figure 26.
DC+
Row
DC–
Row
.6in [16mm]
14 x 1/2in bolt
clearance hole
7 x 3/8in bolt
clearance hole
.9in [24mm]
1.75in [44mm]
.6in [16mm]
.9in [24mm]
.9in [24mm]
1.5in [38mm]
1.5in [38mm]
1.5in [38mm]
1.5in [38mm]
1.8in [46mm]
1.8in [46mm]
Figure 26 — DC tie bar for single battery string
46
026-069-B0 Rev G
Two battery strings
Four 2DC joining plates are supplied with the dimensions shown in Figure 27.
DC+
Row
DC–
Row
.6in [16mm]
6 X1/2" bolt
clearance hole
.9in [24mm]
3 X3/8" bolt
clearance hole
3.0in [76mm]
1.75in [44mm]
.9in [24mm]
.6in [16mm]
1.5in [38mm]
1.5in [38mm]
.9in [24mm]
Figure 27 — DC tie bar for two battery strings
026-069-B0 Rev G
47
5.4 Commissioning the System for the First Time
5.4.1 Tools Required
The following tools are required to commission the AMPS80 HP system for the first time:
•
Medium flat screwdriver with approximately 3/8" (5 mm) blade width
•
True RMS digital multimeter
•
Computer with Ethernet port and Internet Explorer 7 or later
•
Crossover Ethernet cable if a computer is directly connected to the CXC controller
•
Straight through Ethernet cable if the network connections are made through a router or hub
•
Torque wrench
•
3/8" hex driver
CXCR Ethernet port
5.4.2 Before you begin:
WARNING!
The AMPS80 HP must have no power (utility breaker OFF and locked out) and no modules
installed prior to start-up.
1. Verify that the AMPS80 HP system is mechanically secured to the floor or other structure.
2. Verify that the contoller breakers on top of the unit are set to ON. See Figure 1
3. Verify that the clearances around the AMPS80 HP system meet the minimum requirements (see Figure
10).
4. Ohm-test the AC and DC bus bars to check for any shorts caused by cut wires, loose bolts, washers and
other conductive material. If possible do Megger testing.
5. Verify that the AMPS80 HP system is correctly and securely grounded to the building grounding system.
6. Verify that the AMPS80 HP system is correctly and securely connected to the utility and batteries:
a. For the battery connections, follow the manufacturer's recommendations and record the torques.
b. For the AC connections, torque #1 AWG - 350 kcmil wire to 375 in-lbs (42 N-m), and #6 - #2 AWG
wire to 200 in-lbs (23 N-m).
c. If rectifier wiring is installed, torque the connections to 120 in-lbs (14 N-m).
7. If this system includes rectifiers for charging, verify that all rectifier modules are removed from the rectifier
shelves.
48
026-069-B0 Rev G
8. Verify that all breakers at the external load distribution box are switched OFF.
9. Refer to and verify that the following breakers are OFF
•
Rectifier AC input circuit breakers (if option installed)
•
inverter AC input circuit breaker
•
Inverter AC output circuit breaker
•
DC input breakers (if option installed)
10. If equipped with a maintenance bypass switch (MBS), place this switch in the INVERTER mode.
11. If a Generator is installed, verify that the transfer switch has a minimum 1 second switching delay or that
the transfer is always in phase (+/- 30 deg).
Starting-up the system
12. Switch on the AC mains/utility power.
13. Verify the AMPS80 HP system AC input voltages at the AC wiring terminals (Figure 22):
System
ALL
3 phase
Voltage
Value
Neutral to Earth Ground
L1 to L2, L2 to L3, L3 to L1
~0V
~208V
Neutral to L1 / L2 / L3
2-pole
L1 to L2
120V
~208V
Neutral to L1 / L2
Split Phase
L1 to L2
120V
~240V
Neutral to L1 / L2
120V
14. Check that the battery polarity is correct and then switch on the external battery breakers or complete the
fuse circuit.
15. Turn on the AMPS80 DC Input Breakers (if installed).
16. Verify that the system starts up and that the controller switches on: the controller display initializes with
three LEDs blinking while a self-test runs for 15 seconds. Ignore any alarm conditions indicated by the
amber and red LEDs.
252W
2%
AC Output Power
% ratio of the Output
Power VA or Watts
whichever is higher
Figure 28 — Controller default home screen
026-069-B0 Rev G
49
Connecting a laptop
17. Connect a computer to the CXCR controller with a crossover cable.
Installing One Seed Module per Phase
You are now going to configure the system with just one inverter per phase.
18. Install only one inverter "seed module" per phase according to the instructions in Figure 31 and Figure 32.
Position each inverter in the same shelf position per phase.
Install ONLY ONE INVERTER
PER PHASE in the right most
position of the top shelf for
each phase.
Inverters for AC phase 1 (L1)
Inverters for AC phase 2 (L2)
Blank panels
Figure 29 — Seed modules shown for 40 kVA, split-phase systems
19. Switch on the inverter AC input breaker on the AMPS80 HP front panel. Verify that the AC input LEDs turn
on for each module. The LEDs may flash in different colors but this behavior is not a cause for concern.
20. Use the CXC GUI as follows to verify that the modules are recognized and the voltages and currents of
the modules are displayed. (Ignore any alarms at this point. The current readings at no load are not very
AC input LED
Figure 30 — Inverter module showing AC input LED
50
026-069-B0 Rev G
WARNING!
Do not install all inverter modules at once but load one inverter module into an open slot for
each AC phase. This allow the initial set-up of the AC phases. All remaining modules will
automatically take on the configurations of these “seed” modules. See diagrams under Section 8.1: Module Location Relative to System Wiring for AC phase locations. See below for
detailed module insertion/removal instructions. You may not want to close/lock the grill at
this time because the module may have to be removed at a later stage.
CAUTION!
Improper installation or removal of modules can break latching components.
Unlock
Lock
Insert a flat head screw driver into the center flap
notch and pry open the center flap. Then pull out the
module by pulling on the center flap with both hands.
Leave the module plastic front grill in the open/unlocked position, then slide/push the module all the
way into the module slot, and then close the flap.
Figure 31 — Unlocking and locking an inverter module for removal or insertion
1. Place module into shelf.
2. Press module into place and
ensure connection is engaged.
3. Close cover and snap module
into place. If cover does not close
easily, repeat Step 2.
Figure 32 — Inserting and removing an inverter module
026-069-B0 Rev G
51
precise.)
a. Select Inverters > View Live Status> Inverter Report.
b. In the Inverter Report screen, locate the module for AC phase 1: click each row until the LEDs of the
inverter in the first phase 1 shelf flash for a few seconds.
c. Using the pull down box in the Module Number column, set the module number to 1 to correspond
to AC phase 1.
d. Locate the module for AC phase 2: click each row until the LEDs of the inverter in the first phase 2
shelf flash for a few seconds.
e. Use the pull down box to set the module number to 2 to correspond to AC phase 2 (for split phase,
2-pole and 3 phase systems).
f. Repeat for a third module (select 3 to correspond to AC phase 3) if the system is 3 phase.
21. Now that the inverter modules in each shelf have a number, place one module in each of the AC input
and output groups as follows:
Select a row to send a
Locate command; the inverter module LEDs will
flash for a few seconds.
Module number
pull down box
Figure 33 — Inverters > View Live Status
52
026-069-B0 Rev G
a. Select Main Menu > Inverters > Group Mapping.
b. Turn the inverter modules OFF by clicking the green power icon at the end of the row. The green
power icons turn black in a few seconds.
c. Match AC Input Groups to AC Output Groups by configuring the modules to the groups as shown in
Figure 34.
22. DO NOT TURN THE INVERTERS BACK ON. PROCEED WITH THE NEXT STEP.
For a 3-phase 120/208V system,
click on heading button 3
For a split phase 120/240V system,
click on heading button 2
Figure 34 — Matching AC Input Groups to AC Output Groups
23. Select Inverters -> Set Output to set the number of inverters in each phase of your system. Match the AC
input phase to the corresponding AC output phase.
a. Number of Modules: Enter the total number of inverter modules that will be installed for that phase.
b. Redundancy: Enter the number of inverter modules that will provide redundant power for that phase.
This information is used to provide system warnings.
c. Phase Shift: Enter the phase shift for output group in your system configuration
1
2
3
Split phase (120/240 V) °
0
180
N/A
2-pole (120/208) °
0
120
N/A
3-phase (120/208 V) °
0
120
240
d. Nominal Output Voltage: Enter 120 for all phases.
e. Press Submit.
CAUTION!
The value entered in the Nominal Output Voltage field can change the actual AC output voltage of the
inverters. Setting this value to anything other than 120 V will render the UL/CSA approval invalid.
24. Check for alarms (Inverters > View Live Status): alarm code (41) PHASE NOT READY indicates that the
phase rotation of the AC Input is not correct. (The inverters will not start until the phase and rotation are
correct.)
If necessary, return to Inverters -> Set Output and correct the phases as shown:
Unit 1
Unit 2
Unit 3
2-pole (120/208 V) °
0
240
N/A
3-phase (120/208 V) °
0
240
120
Validating the inverter configuration
026-069-B0 Rev G
53
25. Select Main Menu > Inverters > Group Mapping.
26. Turn the inverters on by clicking the black power icon at the right end of the row.
27. Switch on the Inverter AC Output breaker on the front panel of the AMPS80 HP.
28. Check the actual Inverter AC Output by measuring voltages on the AMPS80 HP AC output terminal block
in the wiring compartment (Figure 22):
a. The voltage from Neutral to L1 / L2 / L3 is approximately 124 V. At no load, the inverter output voltage
is slightly higher than nominal.
b. The voltage from L1 to L2 is approximately 240 V for a split phase system, 208 V for 2-pole, or the
voltage from L1 to L2, L2 to L3, and L3 to L1 is approximately 208 V for a 3 phase system.
c. The voltage from AC Input L1 to AC Output L1 is less than 30 V. Similarly, the voltage between L2
input and output and L3 input and output should be less than 30 V.
Installing remaining inverters and rectifiers
29. Install the remaining inverters. The newly installed inverter modules will clone themselves to be identical
to the initial modules that were installed and set up.
30. Select: Inverters > View Live Status at the CXC GUI, and verify that all inverters are recognized as
follows:
a. At this point the inverter module numbers are likely random. Note that the largest possible inverter
number is 32, corresponding to the total number of inverter slots. Renumber the inverter modules in
some logical pattern, such as from the bottom shelf up, using Inverters > View Live Status to locate
and number each module (see Figure 33).
9
10
11
12
5
6
7
8
1
2
3
4
b. We recommend that you mark each physical inverter model with its corresponding inverter number.
To help identify a specific Inverter, click on the inverter row in the View Live Status screen and the
LEDs of that inverter will flash for a few seconds.
c. Select: Inverters > Group Mapping and verify that all inverters are mapped to the correct AC Input
Group and AC Output Group. If necessary, match the AC Input Group to the AC Output Group, as
shown in Figure 34.
d. Map inverters to DC Input Groups as discussed in section 3.6.2.
31. If the system includes the rectifier option:
a. Install one rectifier module per shelf according to the instructions in the rectifier shelf manual that
ships with the unit.
b. Select: Rectifiers > View Live Status and verify that all rectifiers are recognized.
32. Use blank housings to fill slots without modules. See Figure 35.
Final configuration and test
54
026-069-B0 Rev G
WARNING!
Use blanks to cover any open module slots. Do not leave any module slots open.
Safe solution. Blanks must be used to cover any
open module slots.
Unsafe solution. Do not leave any module slots open.
Figure 35 — Inserting blanks in open slots
33. Using the CXC controller web interface, configure any other parameters as required. Typical changes
could include battery and charging values for the rectifiers, if installed, or changing the low and high
voltage AC and DC warning and cutout limits.
34. At this point there should be no alarms present. Investigate and correct any alarm issues.
a. You will see a “communication” alarm if the number of installed inverters do not match the number of
modules set in the Inverters > Set Output menu.
b. Refer to the Troubleshooting Chapter 8 for other alarms.
35. Test the functionality of various module alarms and controls as follows:
Test
Expected result
Turn the bypass switch to BYPASS.
Bypass Mode Active alarm
Turn off the Inverter AC Input breaker.
Inverter AC Input Breaker alarm and no change in AC output
voltage
Turn off the Inverter AC Output breaker.
Inverter AC Output Breaker Off alarm and power to loads is off
Verify the number of modules is correct
in Inverters -> Set Output.
Inverter Comms Lost alarm
Pull out one inverter module.
37. Perform a system load test. Power up the equipment, one at a time. If possible, add heater or light bulb
loads to increase the load temporarily.
38. Turn off the inverter AC input breaker to perform a full load test from DC power.
39. Test operation of Generator and external Maintenance Bypass Switch, if installed.
WARNING!
To prevent electrical hazards such as short circuits, ensure that the system is free of debris
such as metal filings, screws, etc. after the installation is complete.
026-069-B0 Rev G
55
6. System Operation
6.1 Inverter Module Indicators
AC output
DC input
AC input
Status LEDs
Figure 36 — Fig. 4.1 Inverter module status, power LEDs
Output power
indicator LEDs
6.1.1 Status LEDs
Inverter Status LED
Description
Remedial action
OFF
No input power or forced stop
Check AC input
Permanent green
AC Intput OK, normal operation
None required
Flashing green
Inverter OK but conditions are not
within normal parameters
Check upstream and surrounding equipment
Flashing green/orange alternating
Recovery mode after boost
Wait for a while
(10 In short circuit condition)
Permanent orange
Starting-up mode
Wait
Flashing orange
Modules cannot start
Insert CXC
Flashing red
Recoverable fault
Wait or attempt to clear fault condition by
removing and reinserting the module
Permanent red
Non recoverable fault
• Attempt to clear fault condition by
removing and reinserting the module
• Download CXC inverter alarm logs
• Record the alarm(s)
• Send module back for repair
56
026-069-B0 Rev G
Output Power (redundancy not counted)
The output power LEDs (located on the right side of the module’s front panel indicate the amount of power
(percentage of rated power) provided by the module. The number of bars that are illuminated combined with
whether or not they are on steady or flashing indicate the output power level or overload condition as shown
in the figure below.
< 5%
5% to 40%
40% to 70%
80% to 95%
100%
Flashing
On steady
On steady
On steady
On steady
100% Overload
Flashing
Figure 37 — Output power indicator LEDs
026-069-B0 Rev G
57
6.2 T2S Inverter Control Card
The CXC unified system controller monitors and manages inverter modules by communicating with the T2S
inverter control card. The T2S may be useful in troubleshooting inverter alarms.
LEDs 1 through 3 on the front panel of the T2S indicate the following alarm conditions:
•
Major Alarm LED
•
Minor Alarm LED
Major alarm LED
Minor alarm LED
USB port
Figure 38 — T2S front panel
58
NOTE: USB port functionality is disabled
as of T2S software version 2.91. The
T2S can be accessed from the CXC with
current software versions.
Access to locking latch. To remove T2S
from Inverter shelf, insert a small flat
screwdriver and gently press up on the
latch, then pull out the T2S.
026-069-B0 Rev G
6.3 Using the CXC Unified System Controller
The CXC controls the AMPS80 HP system and allows the user to set wide variety of parameters regarding the
alarms and operational functionality of the rectifier and inverter modules.
The following guide provides a brief overview of the controller; in-depth information can be found in the Technical Manual for the Cordex Controller Software.
6.3.1 Software Overview
The CXC software enables control of an entire DC + AC power system via the CXC central touch screen user
interface or web based monitoring and control interface. The software also allows the user to control temperature compensation, auto equalization, remote access, and battery diagnostics.
Figure 39 — CXC system controller
User interface
Located on the front panel of each model is a 160-x-160-pixel touch screen liquid crystal display. This graphical user interface (GUI) enables a person to interact with screen selectable items.
LED lights
Each CXC has three LEDs located on the front panel. These are used to display the alarm status of the power
system, CXC progress and status during startup, and file transfers.
Alarm conditions
The CXC illuminates the LED that corresponds to the system alarm status. The following show the corresponding alarm status for each LED color:
•
Green – OK, no alarms present.
•
Yellow – Minor alarm is present (no major alarms).
•
Red – Major alarm is present.
•
Only one LED is illuminated at a time during alarm conditions.
026-069-B0 Rev G
59
6.3.2 Communication and Control Connections
Remove two screws and fold the controller front panel down to access the communication and control connectors.
NOTE:
The breakers located at the top of the AMPS80 (see Figure 1) protect the wiring to the
CXC and alarm contacts of the different auxiliary contacts on the AC inverter input and output breaker, the TVSS and the MBS.
Input and output signal connections
Controller Ethernet port
6.3.3 Quick Start
1. To initiate a startup routine, switch on the power to the controller by closing the battery breaker. The
controller performs a short self-test as it boots up. Alarm alerts are normal. The LEDs perform a scrolling
pattern to indicate there is activity. Wait for the startup routine to finish.
2. Check and adjust alarms and control levels in the CXC submenus.
3. Check and adjust group settings in the INVERTERS and RECTIFIERS submenus; e.g. float, equalize
voltage, etc.
4. Verify COMMUNICATIONS settings as needed.
5. Program the CXC TEMP COMP and AUTO EQUALIZE settings as needed.
6. Test relay OUTPUT ALARM\CONTROLS as needed; e.g. Major Alarm, CEMF, etc.
60
026-069-B0 Rev G
6.3.4 Startup and Reset Procedure
When the CXC is powered-up or reset, it will first perform a 15 second self-test before displaying the Cordex
logo. The three front-panel LEDs illuminate temporarily, and then extinguish after the system has finished its
self-test. The GUI then displays the power system parameters during Normal operating mode.
6.3.5 Normal Operation
This is the default-operating mode or “home page.” The GUI displays system status information and monitors
all input channels. The Analog Signals Display on the home page show two lines of text for system voltage
and current by default.
Each active area is touch sensitive and responds best to a stylus suited for this purpose.
Mode status
Rectifier information
(Converter report if applicable)
Alarm condition icon
252W
2%
AC Output Power
% ratio of the Output
Power VA or Watts
whichever is higher
Alarm indication
Priority icon
Date and time
Software version
Home page icon, tap to login
Figure 40 — LCD active areas
Login
1. Tap the Home icon (Figure 40) and select Login from the menu prompt. A pop-up window for password
entry appears.
2. Enter 1234 for Supervisor access, 5678 (or nothing) for User access. In User access mode, the user
cannot make changes to parameters but can navigate through menus.
Figure 41 — Password entry pop-up window
026-069-B0 Rev G
61
6.3.6 Menu Navigation and Sample Programming
Menu Navigation The sample screen shown below is presented upon login. From here, the user
may navigate (e.g. browse – as on a personal computer) to each of the CXC menu items, including
alarms, controls and configuration items.
Battery volts and
load current display
Mode + temp comp. display
The folders can be expanded
(indicated by the plus sign shown
here) if there are files inside.
Tap on the folder icon
or label to expand.
Folders that can be collapsed will
be shown with a minus sign.
Sliders and scroll
bars are used for
navigation
Buttons display here for additional functions, such as logout,
programming, or save changes.
Figure 42 — Navigation screen
Option to Logout
Via the Option button, a pop-up window enables the user to logout of the menu navigation
screen and return to the home page. Follow the on-screen prompts to log out
Option to save
Saving in menu navigation (Supervisor only) will result in a prompt (pop-up window) to
appear; e.g., “Save Complete” when the settings are downloaded. Follow the on-screen
prompts to save or discard changes.
Auto-logout time out
After 20 minutes of inactivity (no user input), the CXC will automatically logoff the user.
The CXC will discard any unsaved changes made by the user while logged in the system
and return to Normal Operation mode.
Backlight time out
After one minute of inactivity (no user input), the CXC will automatically turn off the LCD
backlight.
Reset
See below.
38335W
77%
38335W
77%
Press
Press Reset
Press the “reset now” pop up when it appears.
62
026-069-B0 Rev G
6.3.7 Web-accessed Features
This section describes the additional web page features for Inverter system. See the CXC Software manual
for a complete description of the Cordex functionality.
These instructions explain the interconnection and operation of the Cordex Controller with Inverter Support.
The CXC has Ethernet capability that supports a web interface and SNMP for customer access to the equipment it is monitoring.
The CXC also has a CAN bus for communication with the Cordex rectifiers and other peripheral equipment.
Refer to the Cordex Software manual for details.
Inverter monitoring and control
The Inverter menu category consists of inverter alarms, signals and settings. Parameters can be accessed
such as the number of acquired inverters, output voltage/power, and source position.
Other features include: Input source, Inventory update,Inverter locate, Group assignment, Inverter firmware
upgrade, major and minor alarms.
Figure 43 — Illustration of web interface window (sample home page)
026-069-B0 Rev G
63
6.3.8 View live status inverter report
This submenu of Inverters will enable the user to view, in a list report, all of the acquired inverters in the system. The first column lists the module numbers (ID) of the inverters; which may be re-assigned. The report
then displays the unique serial number and module version, followed by the corresponding AC In, DC In, and
AC Out group mapping values. The input frequency and temperature of each inverter completes the top portion of the report table. The bottom portion of the report lists all the currently active inverter module specific
and system alarms.
Figure 44 — View live status page
A pull down menu allows the user to reassign the inverter module number in the
report to correspond with its physical location on the shelf, for example.
Selecting a module number that is already
used will swap the two modules.
Select a row to send a
locate command. The
inverter module's LEDs
will blink momentarily
Figure 45 — View live status — inverters page
64
026-069-B0 Rev G
6.3.9 View Group Status
This submenu of Inverters displays the grouping of input sources and inverter output that share the unique
operating parameters that were set in the Group Mapping menu.
This screen can display 4 Inverter DC Input Groups and 3 AC Input Groups and 3 AC Output Groups.
Three groups
support a threephase input.
Up to four
groups for DC
input sources.
Figure 46 — View group status window — inverters page
026-069-B0 Rev G
65
6.3.10 Group Mapping
A matrix of buttons allows the supervisor to map (enable/disable) the inverter's assignment per group for all
of the acquired inverters in the system.
Ensure phases are configured
correctly before mapping inverters in the new groups and turning
them on.
"Power Buttons"
Click these buttons to switch
the inverter ON/OFF. Use with
caution.
Green = inverter is ON
Black = inverter is OFF
Amber/Red = inverter ALARM
Figure 47 — Group mapping window
Power buttons – Green indicates an inverter is turned ON. An amber/orange/yellow color indicates the
inverter is in a recoverable error. The user can attempt to turn on the unit. The red color indicates the inverter
is in an irrecoverable error and there is nothing the user can do to turn on the unit. Black indicates an inverter
is manually OFF. Adding/removing groups (columns) may take a few seconds to incorporate the change.
Changing the radio style buttons (rows) will also take time to apply changes; for example, approximately two
seconds for one inverter and up to ten seconds for the maximum number of inverters (32).
If there are inverters mapped to a column, disabling a column is prevented and a warning message is displayed.
All inverters must be turned OFF to enable the AC Output Groups column buttons. The AC Output Groups of
an inverter in the ON state cannot be changed. The radio buttons for that inverter AC output group will remain
disabled until the inverter is turned OFF.
66
026-069-B0 Rev G
6.3.11 Set Inputs
This submenu of Inverters enables the supervisor to set the parameters shown below:
See general
settings.
For inverters,
changes apply on
a page by page basis; select Submit.
Select Cancel to
discard all changes
made (including
invalid settings).
Figure 48 — Set input window
026-069-B0 Rev G
67
6.3.12 Set Output
This submenu of Inverters will enable the supervisor to modify the following parameters:
CAUTION!
The value entered in the Nominal Output Voltage field can change the actual AC output
voltage of the inverters. Setting this value to anything other than 120 V will render the UL/
CSA approval invalid.
Number of Modules
Total number of inverter modules installed for that phase. Setting this number to
something different from the actual number of installed modules results in the
alarm condition Inverter Comms Lost.
Redundancy
Defines the number of inverter modules that will provide redundant power for that
phase (used to provide system warnings).
Phase shift
Assigns a phase shift (in degrees) to the AC output group.
Nominal Output Voltage
Enter 120 for all phases.
Ensure that the Phase Shift is set correctly before mapping inverters in the new groups and turning them on.
An invalid setting (for any
configurable parameter)
will be indicated with a
red exclamation mark.
For inverters,changes
apply on a page by
page basis; select
Submit.
!
Hovering the mouse on
the exclamation mark reveals the error message.
Select Cancel to
discard all changes
made (including
invalid settings).
Figure 49 — Set Output window
68
026-069-B0 Rev G
6.3.13 General Settings
This submenu of Inverters enables the supervisor to set the parameters shown below:
Value 0 or 100 only.
For inverters, changes apply on a page
by page basis; select
Submit.
Select Cancel to
discard all changes
made (including
invalid settings).
Figure 50 — General settings window
The Free Running Frequency min/max setting is determined by the General Settings value. If AC input is present, AC output will synchronize; however an irregular AC voltage could damage the inverters.
6.3.14 Manage Config File
The inverter settings have their own configuration and are not part of the full site configuration file. Refer to
Chapter 10 for a list of the configuration file parameters and steps to save the file and upload it to another
system.
Figure 51 — Manage Config File window
026-069-B0 Rev G
69
6.3.15 Alarms
Standard Inverter Alarms
Alarms for the following conditions can be configured from the Alarms > Configure Alarms menu category
(refer to the controller software manual for more details on alarm configuration):
Alarm Name
Alarm Condition
Inverter Major Fail Count
Number of failed Inverters equals or exceeds a user configured threshold
Inverter Minor Fail Count
Number of failed Inverters equals or exceeds a user configurable
threshold
Inverter Comms Lost
Controller loses communications with any one inverter. The number of
inverters must be correctly identified in the Inverters > Set Output menu.
Inverter AC Input Fail
Main AC input of the inverter is lost
Inverter Alarm
Any individual or system alarm is detected
Figure 52 — Configure alarms window
Custom Inverter Alarms—Mapping Alarms to Relays
Custom inverter alarms can be mapped through the digital inputs to available relays. Refer to the latest version of the CXCU Controller software manual.
70
026-069-B0 Rev G
Alarms reported by T2S are reported in the event logs.
Figure 53 — T2S alarms in event logs
6.3.16 Retrieve Inverter History File
A new submenu Retrieve History File under Inverters opens a page with a Save Inverter History File button to
download the inverter alarm history file to local disc. This functionality is similar to downloading the inverter
configuration file (see section 10.1.
Figure 54 — Retrieve inverter alarm history file
026-069-B0 Rev G
71
6.3.17 Signals
The Signals submenu displays inverter signals for all acquired inverters in the system. The following signals
can be used for logging and equation building.
Figure 55 — Signals (inverters) window
72
026-069-B0 Rev G
6.4 Rectifier Features
6.4.1 Rectifier Front Panel Lights
Refer to the Cordex CXRF 48-1.8 kW manual for further details.
AC LED light
AC LED light
The top LED (green) is on when AC
is within valid range. AC voltage is
invalid if the AC Mains Low or AC
Mains High alarm is active. The
LED turns off when AC has failed.
DC LED light
Alarm LED light
DC LED light
The middle LED (green) is on when
the rectifier is delivering power to
the load. The LED will flash when
communication is lost. The LED
turns off when the rectifier is off;
e.g., when commanded via the
controller.
Figure 56 — Cordex CXRF 48 V rectifier
Alarm (ALM) LED light
The bottom LED (red) is on continuously
in the event of an active Module Fail
alarm; if the module is unable to source
power as a result of any of the following
conditions:
•
Output fuse blown
•
AC Mains Input Fail
•
Module fail (ramp test fail)
•
High voltage (OVP) shutdown
•
Thermal shutdown
•
Local shutdown
•
UPF fail
•
No output power
•
Fan fail.
The LED will flash (~2Hz) when a minor alarm is detected; if the modules output capability has been reduced
or a minor component failure is detected during the
following conditions:
•
VAC meter fail
•
AC foldback
•
Remote equalize
•
Fan fail
•
Low output voltage
•
High output voltage
•
Current limit (programmable option)
•
Power limit (programmable option)
•
High temperature foldback
•
Temperature sense fail
•
Soft start operation
•
Communications lost.
The LED remains off in the absence of an alarm. If the
unit output is not connected to a battery or parallel rectifier, the LED will extinguish if no AC power is present.
026-069-B0 Rev G
73
6.4.2 LED Activity During Rectifier Software Upload
When a rectifier software upload is in progress, the LEDs will behave in a distinctly different way to indicate
new rectifier software is being transferred from the CXC.
When a rectifier data transfer is in progress, all three LEDs will flash in a sequence lasting 1.5 seconds. When
the last LED is lit, the sequence is repeated beginning at the first LED.
6.4.3 LED Activity During Rectifier ‘Locate Module’ Command from
Controller
When the ‘locate module’ command has been received from the CXC, the LEDs will behave in another distinct fashion so that the rectifier is easier to visually identify among adjacent rectifiers.
This state is entered when commanded via the CXC. The LEDs will flash in a ping-pong pattern repeating
every 2 seconds.
The ping-pong pattern lights each LED sequentially. After the last LED is lit, each LED is lit in reverse sequence. When the first LED is lit, the pattern repeats. The effect makes it appear as if the light is bouncing
between the first and last LED.
6.4.4 True Rectifier Module Fail Alarm
The power modules have a “true” fail alarm. This provides a true indication of the power module’s ability to
source current. When the module’s output current drops below 2.5% of the rated output a low output current
condition is detected and the Module Fail detection circuit is activated. This circuit momentarily ramps up the
output voltage to determine if the module will source current. If no increase in current is detected, the Module
Fail alarm is activated. The module will test once every 60 seconds for the condition until current is detected.
Output voltage ramping will cease upon detection of Current1. A minimum 2.5% load is required to avoid the
Ramp Test Fail alarm; this can typically be provided with the parallel system battery. Activation of this alarm
could indicate a failed module or a failed load.
For Cordex rectifier systems without batteries (or with a very light load; below 2.5% of rated output) it is
recommended that the ramp test be disabled to avoid nuisance alarms. The Ramp Test feature is enabled/
disabled via the CXC menu item: Rectifiers, Configure Settings.
74
026-069-B0 Rev G
6.4.5 Mapping Alarms to Relays
1. Connect a computer to the controller. Refer to the controller software manual. The 48 V DC power must
be switched on before the controller can operate. Provide either DC power on the main DC1 or DC4
connections or switch on at least one rectifier.
2. Navigate to Alarms > Configure Alarms.
3. Select Digital Inputs.
Select Digital Alarms
4. Select the desired relay. In this example K7 and K8 are available.
Select desired relay
If this popup appears
select another relay
026-069-B0 Rev G
75
5. After changes have been made, press Submit Changes.
6. Accept changes.
Press Accept
7. Hook up control wires
to the selected relay.
Relays
76
026-069-B0 Rev G
6.5 Synchronization with a Maintenance Bypass Switch (MBS)
6.5.1 Internal Maintenance Bypass Switch
If an internal MBS is present, implement the following sequence before switching the unit from bypass mode
to inverter mode.
Switching from Bypass Mode to Inverter (On-line)
1. Switch on the Inverter AC Input breaker.
2. Wait for the inverters to synchronize to the line—all status LEDs on the inverters will turn green.
3. Switch on the Inverter AC Output breaker.
4. Smoothly rotate the maintenance bypass switch in a clockwise rotation from BYPASS to INVERTER.
6.5.2 External Maintenance Bypass Switch
Before switching an external MBS from UTILITY mode to UPS mode:
1. Switch on the AMPS80 Inverter AC Input breaker. Wait for the inverters to synchronize to the line, and for
all status LEDs to turn green.
2. Switch on the AMPS80 Inverter AC Output breaker.
3. Follow the steps in the external MBS user manual to switch the external MBS bypass switch to UPS.
026-069-B0 Rev G
77
7. Maintenance
7.1 Preventive Maintenance
This equipment requires regular maintenance. The maintenance must be done by qualified service personnel
only. Contact Alpha Technologies at 1-888-462-7487 for any assistance with maintenance.
WARNING!
WARNING: HIGH VOLTAGE AND SHOCK HAZARD Use extreme care when working inside the enclosure/shelf while the system is energized. Do not make contact with live components or parts. Static electricity may damage circuit boards, including RAM chips. Always
wear a grounded wrist strap when handling or installing circuit boards. Ensure redundant
modules or batteries are used to eliminate the threat of service interruptions while performing maintenance on the system’s alarms and control settings.
7.2 Recommended maintenance schedule
Task:
Interval
Clean ventilation openings
1-6 month
Inspect all cable connections, re-torque if necessary
1 year
Verify alarm/control settings
1 year
Verify alarm relay operation
1 year
Verify circuit breaker operation
1 year
7.3 Tools, Spare Parts and Equipment
Table I — Tools
Required
78
Service /Maintenance
Commissioning
Torque wrench
X
X
#2 Philips screw driver
X
X
#2 flat head screw driver (3/16") width head
X
#1 flat head screw driver (1/8") width head
X
Small flat head screw driver (1/16") width head
X
9/16" hex driver
X
3/8" hex driver
X
7/16" combo wrench
X
7/16" flat gear ratchet
X
9/16" combo wrench
X
9/16" flat gear ratchet
X
11/16" combo wrench
X
11/16" flat gear ratchet
X
6" ratchet extension
X
3" ratchet extension
X
X
026-069-B0 Rev G
Table I — Tools
3/8" ratchet socket
X
7/16" ratchet socket
X
7/16" ratchet socket extended neck
X
9/16" ratchet socket
X
9/16" ratchet socket extended neck
X
5/8" ratchet socket
X
5/8" ratchet socket extended neck
X
10 mm combo wrench
X
10 mm flat gear ratchet
X
3/8" Allen key on a 3/8" ratchet socket
X
X
3/16" Allen key on a 3/8" ratchet socket
X
X
Flash light or trouble light
X
X
Crossover Ethernet cable
X
X
Straight through Ethernet cable
X
X
Computer with Ethernet port and Internet Explorer
X
X
True RMS digital multimeter
X
X
Service /Maintenance
Commissioning
Other Recommended Tools
Needle nose pliers
X
Side cutters
X
Wire stripper 10 AWG to 20 AWG
X
Exacto knife
X
Measuring tape with inches and cm
X
Scissors
X
Rubber mallet 1-1/4" diameter
X
Table J — Spare Parts
P/N
Part Description
014-201-20
AIM2500 inverter module, 2.5 kVA, 2.0 kW
571-005-10
Inverter black plastic front assembly
7400026
Inverter fan
010-580-20-040
1.8kW rectifier module for AMPS80 shelf (de-rated to 1150kW for single phase)
747-272-20-000
Rectifier fan (hybrid option only)
460-421-19
Rectifier Fuse, 200A, In-line (hybrid option only)
741-032-21
Blanking module for inverter or rectifier slot
018-557-20-342
CXCR controller
543-027-19
CanBus connector cable
545-596-10
CAT5 Ethernet connector cable
5450196
Connector, Male, 3.81mm pitch, 8 pin, spring loaded, screw terminals (rear DC wiring panel)
162-600-19
Surge suppression replacement module, red stripe, Line-Ground, 40kA rating
162-601-19
Surge suppression replacement module, green stripe, Neutral-Ground, 40kA rating
741-021-31
AMPS80, TVSS 3-ph, 140kA rating per phase (TVSS option only)
741-021-21
AMPS80, TVSS 2-ph, 140kA rating per phase (TVSS option only)
741-021-41
AMPS80, TVSS 1-ph, 140kA rating (TVSS option only)
026-069-B0 Rev G
79
7.4 Replacing the T2S Inverter Control Card
CAUTION!
Perform this procedure with the system in bypass mode and/or during a scheduled
maintenance window.
Step 1: Removal
To release the T2S from the shelf, insert a small flat screwdriver in the
square hole under the USB port and lift up the lock pin. Then pull out the
module.
Step 2: Replacement and Initialization
Insert the new T2S into the system. Once inserted, it will take about 10
minutes (or longer with fully loaded systems) for the T2S to initialize with
the inverter modules.
CAUTION!
Ignore error/alarm conditions displayed during initialization. Do not remove any system
components during the initialization sequence. Interruptions to the initialization sequence
can result in software corruption and reduced functionality.
When the T2S is initially
inserted, all LEDS are off
for a few seconds.
Initialization is in progress:
Top 2 LEDs: solid green
Bottom LED: off
DO NOT INTERRUPT
Initialization complete:
Top 2 LEDs : solid green
Bottom LED: flashing green
Figure 57 — T2S LED sequence during initialization
80
026-069-B0 Rev G
Step 3: Inventory Update
When the initialization sequence is complete (top two LEDs solid green and the bottom LED flashing green),
use the CXC touch display to perform an inventory update. The CXC memory is cleared of the original T2S
and updated to the latest installed T2S.
Allow up to five minutes upon completion of the inventory update for the CXC to display the inverter
information.
Tap on the
number of rectifiers (will be 0 if
no rectifiers in
the system.)
Tap on
Inventory
Update
Figure 58 — Update Inventory steps
If the system remains in alarm or the inverter information does not appear after five minutes, call Alpha Technologies Technical Support at 1-888-462-7487 for assistance. A laptop and crossover cable is required for
troubleshooting activities.
7.5 Inverter or Rectifier Fan Replacement
To replace a rectifier fan, refer to the manual that shipped with your system.
To replace an inverter fan, refer to Section 7.6 to remove and replace the inverter.
1. Slide the module out of the shelf and wait two minutes for the module capacitors to discharge.
2. Disconnect the fan power wires from the module.
3. Note the direction of the airflow and remove the fan from the front panel.
4. Install the replacement fan with the airflow in the same direction.
5. Reconnect the fan power wires to the module.
026-069-B0 Rev G
81
7.6 Replacing an AIM2500/1500 Inverter Module
CAUTION!
This system is designed for use with Alpha AIM2500 inverter modules (Alpha p/n 014-20120). Use of alternate inverter hardware and/or unapproved firmware versions may cause
system instability and will invalidate system warranty. Consult Alpha customer service or
technical support for additional details.
CAUTION!
Improper installation or removal of modules can break latching components.
Removing a module from a working system generates an alarm, which will not clear until the module is replaced or the number of modules in that phase is reduced by the number of modules removed.
STEP1:
Insert a flat head screw driver into the center flap
notch and pry open the center flap. Then pull out
the module by pulling on the center flap with both
hands.
STEP2:
With the module plastic front grill in the open/
unlocked position, slide the module all the way
into the slot Press the module into place and
ensure connection is engaged. Close the flap.
Unlock
A new module can take between 5 and 10 minutes
to synchronize with the T2S controller and clear any
alarms. Do not interact with the system during the
initialization process.
When the initialization sequence is complete, the
three LEDs on the left hand side of the inverter module turn a solid green.
AC output
DC input
AC input
all green
Use the touch display or a web connection to confirm that the # of modules versus actual installed are
equal. (Inverters > AC Output Groups on the web
interface).
If the system remains in alarm or the inverter information does not appear after five minutes please call Alpha
Technologies Technical Support at 1-888-462-7487 for assistance. A laptop and crossover cable is required
for troubleshooting activities.
82
026-069-B0 Rev G
7.7 Surge Suppression Replacement
WARNING!
There may still be live parts inside the system and shock hazards may be present throughout this procedure.
1. Turn off the inverter input breaker.
Replaceable parts
Alpha part number
Description
2. Remove the wiring access panel.
162-600-19
3. Pull out the surge suppression
module.
Surge suppression replacement module,
red stripe, Line-Ground, 40 kA rating
162-601-19
Surge suppression replacement module,
green stripe, Neutral-Ground, 40 kA rating
4. Replace the module with one of the
same type.
Surge suppression
Red stripe = L-G
Green stripe = N-G
7.7.1 Service Entrance Grade Surge Suppression Replacement
Front and left side access may be required to properly service the service entrance grade TVSS located
behind the CXCR control panel.
WARNING!
There may still be live parts inside the system and shock hazards may be present throughout this procedure.
Make sure the spare parts are available on site.
Replaceable parts
Alpha part number
Description
741-021-31
AMPS80, TVSS 3-ph, 140kA rating per phase (TVSS option only)
741-021-21
AMPS80, TVSS 2-ph, 140kA rating per phase (TVSS option only)
741-021-41
AMPS80, TVSS 1-ph, 140kA rating (TVSS option only)
026-069-B0 Rev G
83
Side Access Replacement
This is the preferred replacement procedure.
1. Turn off the inverter input breaker.
2. Remove the side access panel.
3. With the proper tools, reach in and remove
the screws holding the surge suppression
assembly.
4. Replace the module with an Alpha service
entrance grade surge suppression
assembly.
Bolts holding surge
suppression assembly
Front Access Replacement
1. Turn off the inverter input breaker.
2. Remove the screw securing the CXCR unit.
3. Remove the 4 mounting screws that hold
the CXCR to the chassis.
4. Pull the CXCR out and to the left. Do not
remove any of the wires from the CXCR.
5. Dangle CXCR unit gently.
6. With the proper tools, reach in and remove
the bolts holding the surge suppression
assembly.
7. Replace the module with an Alphaservice
entrance grade surge suppression
assembly.
84
Bolts holding surge
suppression assembly
026-069-B0 Rev G
7.8 Fuse Replacement
For hybrid systems equipped with rectifiers, there are two fuses located behind the DC input breakers shelf
(see Figure 59). These fuses are sized to blow only if there is a wiring fault in the system. These fuses must
be replaced by a qualified service person.
1. Turn the rectifier breakers off.
2. Disconnect the battery feeds to the AMPS unit.
WARNING!
There may still be live parts inside the system and shock hazards may be present throughout this procedure.
3. Remove the left side panel.
4. Remove the ¼-20 nut holding the fuse to the fuse holder/bracket (594-110-13). Use a 7/16 socket or
wrench.
5. Remove the ¼-20 screw and ¼-20 nut holding the wire to the fuse. Use a 7/16 socket or wrench.
6. Replace the fuse with a fuse of the same rating and type:
Replaceable parts
Alpha part number
Description
460-421-19
Fuse, 200A, In-line
Fuses
Figure 59 — Rectifier fuse locations
026-069-B0 Rev G
85
7.9 Synchronization After Maintenance or Repair
Implement the following sequence before switching the unit from bypass mode to inverter mode.
1. Switch on the inverter input breaker. Wait for the inverters to synchronize to the line, and for all status
LEDs to turn green.
2. Switch on the inverter output breaker.
3. If present, switch the internal bypass switch to AMPS80 HP system. If present, switch the external bypass
switch to AMPS80 HP system.
86
026-069-B0 Rev G
8. Troubleshooting
8.1 Non Recoverable Error
Inverter status LEDs
Output power
status LEDs
The status LEDs illuminate permanently red when a non recoverable error occurs. Thanks to its double input
port, the AMPS80 HP inverter module will actually stop when either the output stage is non recoverable or
when both input stages are faulty. Generally, a non-recoverable error cannot be erased and the module must
be returned for repair.
8.2 Recoverable Error
A recoverable error is a kind of protection that acts when, some parameters exit temporarily from their proper
limit range. Stopping the module or removing it from its slot and plugging it back in may solve the problem.
For more detailed diagnostics, use the Ethernet port of the CXCR to view the alarm description. See Alarm
descriptions below. The inverter alarms can be found in Inverters > View Live Status.
026-069-B0 Rev G
87
8.3 Alarm Codes
All alarm codes are listed in Table K. The following alarm codes are included here as well to provide more
information.
8.3.1 No Ethernet Communication
For a direct connection to the CXCR, verify that you are using a cross over cable, that your wireless connection is turned off, and that your local area network connection is set up as shown below.
Reset the CXCR by using the LCD touch screen as shown below:
252W
2%
Press
Press Reset
Press the “reset now” pop up when it appears.
To reset the T2S, remove it from the system, then hook it back up.
88
026-069-B0 Rev G
8.3.2 System Saturated
The system saturated alarm defaults to 80% load on the non redundant inverters. To remove this alarm, add
more inverters or reduce the amount of redundant units.
8.3.3 AC Secondary Source Lost
The AC Secondary alarm happens when the DC is removed from the system and when settings in the group
mapping screen are incorrect.
Click to remove
026-069-B0 Rev G
Click to add
89
8.3.4 AC Mains Lost
The AC Mains Lost alarm happens when the AC input does not meet the correct voltage, phase, or frequency. When AC mains is lost the UPS goes into Inverter Mode. This alarm is sometimes accompanied by other
alarms.
Both the T2S and CXC software give inverter alarm AC Mains Source Lost when a column is not used (or accidentally added) in the AC Input Group in the Inverters>Group Mapping screen.
8.3.5 Manual Off
The Manual Off alarm happens when one or more inverters have been turned off in the group mapping
screen.
8.3.6 Phase Not Ready
Phase not ready alarm happens when the inverter thinks it should be in a certain phase and the input to it is
another phase. This can be correct either by changing the input wiring to the AMPS80 HP or by changing the
phase in the group mapping settings screen.
90
026-069-B0 Rev G
Table K — Alarm Codes
Alarm Type
Description
Cause
Solution
Error Not Recoverable
0
NO ERROR
No error present on the
system
N/A
N/A
1
FAN FAILURE
Failed fan or speed
inappropriate
Dust on FAN or FAN failure
Replace fan or clean it
2
TEMP TOO LOW Measured temperature
inside the module is below
-20°C
The temperature sensor
Replace the module
3
FLASH FAILURE Internal software is
corrupted
Replace the module
4
Vref FAILURE
Internal voltage reference is
out of range
Replace the module
5
ALIM AUX1 FAIL
Internal 15V supply is out of
range
Replace the module
6
ALIM AUX2 FAIL
Internal -15V supply is out
of range
Replace the module
7
TOO MANY
STARTS
Too many starts in 1 minute
( 10 times in 1 minute)
8
This problem usually
happens when the input
source is not powerful
enough to supply the load.
The inverter has a correct
DC voltage and starts. After it
has started, the power taken
on the input source is too
important and the DC voltage
falls under the minimum and
the inverter stops. After 10
attempts to start, the inverter
stops. The aim of this error is
to avoid a situation in which
the inverter keeps starting
and stopping.
Correct the problem : increase
the input power, reduce the
load, increase the voltage
hysteresis… Then, turn the
module OFF to clear the error
and back ON (or, if you have
no access to the supervision,
unplug and replug the module)
OVERCURRENT The AC output current has
OUT
been too high for too long
Problem with IGBTs or
current sensor or output
stage. This can also
happen in very harsh surge
conditions.
Reset the module and try again.
If the problem persists, replace
the module
9
Vint TOO LOW
Intermediate voltage has
been too low
Many causes
Reset the module and try again.
If the problem persists, replace
the module.
10
Vint TOO HIGH
Intermediate voltage has
been too high
The most likely cause is that
energy has been reinjected
into the module (by the load,
if the Acout has been shortcircuited with the grid…)
Check if there is a problem
around the module which could
explain the error. Then, reset
the module and try again. If the
problem persists, replace the
module.
11
Vout PI2 ERROR Error in the self-test during
the starting process
This can be caused by a
problem on the IGBTs
Reset the module and try again.
If the problem persists, replace
the module..
12
Vout MPI2
ERROR
This can be caused by a
problem on the IGBTs
Reset the module and try again.
If the problem persists, replace
the module.
026-069-B0 Rev G
Error in the self-test during
the starting process
91
Table K — Alarm Codes
Alarm Type
Description
Cause
Solution
13
Vout INVERSE
Error in the self-test during
the starting process
This error happens if the
module is not configured on
the correct output phase
Verify the phase configuration
of the modules. Then, reset
the module and try again. If the
problems still happens, replace
the module
14
OVRLOAD TOO
LONG
Output voltage too low due
overload for a long time
Load too higher for the
inverter quantity operational
on system.
Reduce load or add inverter on
the system.
15
OUT FUSE
FAILURE
Module is delivering no
power to the load while the
other module on the same
phase does.
Output fuse open / problem
in the connection of ACout
Check if the problem can be
caused by something external
to the module. If not, replace the
module
16
VoutIout TOO
LOW
Output voltage is too low
while the output current is in
an acceptable range
Problem inside the module.
Reset the module and try again.
If the problems still happens,
replace the module
18
VoutPout TOO
LOW
Output voltage is too low
while the output power is in
an acceptable range
Problem inside the module.
Reset the module and try again.
If the problems still happens,
replace the module
19
RAM FAILURE
Values in the RAM are
corrupt
Replace the module
Error recoverable
33
92
OUT OF SYNC
Inverter is not synchronised
with other inverters
Problem on the
communication bus
Check bus.
Problem inside the module
Replace the module
34
TEMP TOO
HIGH
Temperature on heat sink
too high
Temperature too high in the
room, cooling insufficient, or
inverter component defective
Check temperature inside
inverter. Check room
temperature. Replace FAN.
Replace inverter
35
COM BUS
FAILURE
The inverter doesn't see
itself on the bus
Problem on bus or internal
problem
Check bus / replace module
36
COM BUS
CONFLICT
2 TSI have same ADX
37
NO POWER
SOURCE
No input AC and DC
available on inverter
Will self repair
No supply voltage
Check AC input voltage at AC
input and DC input terminals
Circuit Breaker open
Check Circuit breakers
Wiring fault
Check input voltage at
38
COM BUS
FAILURE
TSI must have a T2S to
start
No T2S in the system
Add a T2S
39
PARAM QUERY
Inverter is updating his
parameters
Part of starting process
Nothing to do
40
PARAM
MISMATCH
Configuration file
incompatible with TSI
inverter
Problem with parameters
Check configuration file and
re-send it
41
PHASE NOT
READY
The phase inverter is not
configured for this phase (
multiple phase system)
AC not present, or phase not
configured
Reconnect AC IN, or configure
the inverter phase in Inverters >
Group Mapping
42
STATUS 42
43
INV MISMATCH
Inverter incompatible with
inverter installed in system
Inverter for pack solution.
Limitation to 6 inverter on the
same BUS
Remove incompatible inverter
026-069-B0 Rev G
Table K — Alarm Codes
Alarm Type
Description
Cause
Solution
44
BACKFEED
ERROR
ACin is supplied by the
ACout of the module
45
Vint TOO HIGH
Same as error 10 but recoverable
65
TSI COM BUS
FAIL
The inverter doesn't see
itself on the bus TSI
Communication problem
Hardware problem. Replace
inverter
66
T2S COM BUS
FAIL
The inverter doesn't see
itself on the bus T2S
Communication problem
Hardware problem. Replace
inverter
67
TSI COM BUS
FAIL
No synch top received on
TSI BUS
No Sync top from TSI inverter Hardware problem. Replace
inverter
68
T2S COM BUS
FAIL
No sync top received on
T2S BUS
No sync top from T2S
inverter
69
LOADSHARING
LOW
The inverter gives less
power than other inverters
in parallel
This alarm should disappear by
itself. If it remains permanent,
the module probably has a
problem.
70
LOADSHARING
HIGH
The inverter gives more
power than other inverter in
parallel
This alarm should disappear by
itself. If it remains permanent,
the module probably has a
problem.
71
VOUT
CHANGING
Output voltage is changing
its nominal value
Happens when there is a
config change to the voltagelasts 1 min for a change from
100V to 120V
NEVER INSERT A NEW
MODULE WHILE THIS IS IN
PROGRESS!
N/A
72
OVERLOAD
CURRENT
The load current is greater
than the current available
from inverter
Load too high or some
inverters are failing.
Reduce load or add inverter to
the system.
73
COM BUS
MISMATCH
The modules seen on bus
A are different that modules
see on bus B
Alarm- triggered when it sees
more or less modules on bus
A vs bus B - used to identify
a module problem while the
module is still running
Hardware problem. Replace
inverter
74
IMMINENT
START
Reported from a stopped
Start up procedure
module 10 seconds before it
is going to start
N/A
75
BOOSTER NOT
READY
The boost function is not
allowed at this time
Less than 60 second, after
previous boost action
Wait 1 minute to recover from
the situation
76
OVERLOAD
NOT READY
The overload function is not
allowed at this time
Less than 55 second, after
previous overload status
Wait 1 minute to recover from
the situation
77
TEMP
DERATING
Heat sink temperature over
Temperature measured
from the heat sink - 88°C for rating
AIM2500 module and 70°C
for AIM1500 module
Check temperature inside
inverter. Check room
temperature. Replace FAN.
Replace inverter
78
OVERLOAD
POWER
The load power is greater
than the power available
from inverter
Reduce load or add inverter on
the system.
79
EEPROM
DEFECT
The EEPROM has a
problem
026-069-B0 Rev G
Grid is not present and there
is a short circuit between
ACin and ACout
Requested power greater
than available power
Hardware problem. Replace
inverter.
Replace Inverter
93
Table K — Alarm Codes
Alarm Type
Description
Cause
AC in below 100V - reduce
power from the AC input and
pull power from the DC input
Solution
80
BROWNOUT
DERATING
The nominal power is not
available from the AC
Grid. The inverter could
compensate from DC
source.
Check AC grid and configuration
81
FAN LIFE
ELAPSED
Fan running time has exceeded preset value to advise fan
replacement
Replace FAN and reset the
counter time
82
REMOTE OFF
Inverters are set to OFF
remotely
Inverter are switch OFF by
remote function
Replace FAN and actualize the
counter time
83
MANUALLY OFF
The inverter is manually set
to OFF.
Inverter is switched OFF
by the OFF function in web
interface
Start inverter through the web
interface
Start inverter by REM ON/OFF
terminal
Status AC on Inverter
94
160
ACin OK
The grid AC is coming back
inside the preset range
AC voltage coming back
inside the range
N/A
161
Vac_in too low
The input grid is below the
preset range
AC voltage outside the range
Check AC grid and configuration
162
Vac_in too high
The input grid is upper the
preset range
AC voltage outside the range
Check AC grid and configuration
163
ACin IMP too
high
This status appears during
The module can stay in this
the starting procedure of the status if it can't start. This
ACinput stage
happens if the power of the
AC supply is too low
164
STATUS 164
165
Vac_in too LOW
The input grid is below the
preset range
AC voltage outside the range
(RMS value)
Check AC grid and configuration
166
Vac_in noo HIGH The input grid is above the
preset range
AC voltage outside the range
(RMS value)
Check AC grid and configuration
167
ACin NOT
CONFORM
ACin is outside the range
AC voltage outside the range
(instantaneous value)
Check AC grid and configuration
168
ACin NOT
CONFORM
ACin is outside the range
AC voltage outside the range
(instantaneous value)
Check AC grid and configuration
169
ACin NOT
CONFORM
ACin is outside the range
AC voltage outside the range
(instantaneous value)
Check AC grid and configuration
170
STATUS 170
171
ACin NOT
CONFORM
ACin is outside the range
AC voltage outside the range
(instantaneous value)
Check AC grid and configuration
172
ACin THD too
high
THD grid is outside the
allowed value
THD AC voltage outside the
range
Check AC grid THD
173
STATUS 173
174
STATUS 174
175
ACout NOT
SYNC
The AC out is not
synchronized with grid
Check synchronization
between AC in and AC out
Check AC grid and configuration
176
INV NOT SYNC
The AC out is not
synchronized with grid
Check synchronization
between AC in and AC out
Check AC grid and configuration
177
SYNC FAILURE
Inverter not synchronized
Check synchronization
between AC in and AC out
Check AC grid and configuration
026-069-B0 Rev G
Table K — Alarm Codes
Alarm Type
Description
Cause
Solution
178
STATUS 178
179
Vac_in TOO
LOW
The input grid is below the
preset range
Check AC In configuration
and live value
Check AC grid and configuration
180
Vac_in TOO
HIGH
The input grid is above the
preset range
Check AC In configuration
and live value
Check AC grid and configuration
181
Fac_in TOO
LOW
Input frequency is lower
than the preset value
Check AC In configuration
and live value
Check AC grid and configuration
182
Fac_in TOO
HIGH
Input frequency is higher of
the preseted value
Check AC In configuration
and live value
Check AC grid and configuration
183
PHASE NOT
READY
Inverter not ready to deliver
power on the phase
Inverter not configured on the Reconnect AC IN, configure the
phase
inverter phase
184
BACKFEED
ERROR
Same as 44
189
OVERCURRENT ACinput Current is too high
ACin
Surge / hardware problem on
ACinput stage
Retry / replace module if the
problem still happens
191
SCN FAILURE
Short-circuit Booster failure
The booster (which allows
10 Iin on short circuits) has a
problem
Replace inverter
193
DCin OK
Input DC voltage inside the
range
194
Vdc_in TOO
LOW
Input DC voltage lower than
the preset value.
Check VDC parameter and
live value
Check DC from battery and
configuration
195
Vdc_in TOO
HIGH
Input DC voltage higher
than the preset value.
Check VDC parameter and
live value
Check DC from battery and
configuration
202
Vdc_in TOO
LOW
Input DC voltage lower than
the preset value.
Check VDC parameter and
live value
Check DC from battery and
configuration
203
Vdc_in TOO
LOW
Input DC voltage lower than
the preset value.
Check VDC parameter and
live value
Check DC from battery and
configuration
204
Vdc_in TOO
HIGH
Input DC voltage higher
than the preset value.
Check VDC parameter and
live value
Check DC from battery and
configuration
210
Vdc_in TOO
LOW
Input DC voltage lower than
the preset value.
Check VDC parameter and
live value
Check DC from battery and
configuration
211
Vdc_in TOO
HIGH
Input DC voltage higher
than the preset value.
Check VDC parameter and
live value
Check DC from battery and
configuration
226
NO
Write "No Transmission"
TRANSMISSION event in log file when the
inverter is no longer seen by
the T2S.
Alarm from the T2S - does
not see any TSI- all modules
- system alarm or when the
T2S does not see one of the
modules
Replace defective inverter or
adapt configuration
227
DIG INP1
FAILURE
Generate alarm code 227
and appropriate text when
digital input 1 changes state
Digital input has changed
status
Check device connected on
input digital
228
DIG INP2
FAILURE
Generate alarm code 228
and appropriate text when
digital input 2 changes state
Digital input has changed
status
Check device connected on
input digital
229
REDUNDANCY
LOST
229 and text "Redundancy
Lost" when condition is true
Lost of inverter redundancy
Replace defective inverter or
adapt configuration
Status DC on Inverter
Nothing to do
T2S Event
026-069-B0 Rev G
95
Table K — Alarm Codes
Alarm Type
96
Description
Cause
Solution
230
REDUND + 1
LOST
Generate alarm code 230
and text "Redundancy + 1
Lost" when condition is true
Lost of inverter redundancy +
1 inverter
Replace defective inverter(s) or
adapt configuration
231
SYS
SATURATED
Generate alarm code 231
and text "Sys Saturated"
when the condition is true
Load of system is greater
than the preset value
Reduce load, or add inverter to
the system or reduce the number
of redundant units in Inverters >
Set Output, or change the alarm
level trigger.
232
MAIN SOURCE
LOST
Generate alarm code 232
and text "Mains source lost"
when the condition is true
Priority source lost (depends
on the configuration AC/AC
or Online)
1) In AC/AC configuration:
Reconnect AC IN or check
configuration or check live
value. 2) In Online configuration:
Reconnect DC or check
configuration or check level
voltage
233
SEC SOURCE
LOST
Generate alarm code 233
and "Sec Source Lost"
when the condition is true
Secondary source
lost (depends on the
configuration AC/AC or
Online)
1) In ONLINE configuration:
reconnect AC IN or check
configuration or check live value.
2) In AC/AC configuration:
reconnect DC or check
configuration or check level
voltage
234
T2S BUS FAIL
Generate alarm code 234
and "T2S Bus Fail" when
the condition is true
The communication bus to
T2S has failed
Hardware problem. Replace T2S
235
T2S FAILURE
Generate alarm code 235
and text "T2S Failure" when
the condition is true
T2S has failed
Hardware problem. Replace T2S
236
T2S STARTED
Write event "T2S Started" in
log file when T2S is started
(powered up)
T2S has started
237
LOG CLEARED
Write event "Log Cleared"
in log file when the log is
cleared
T2S has cleared the log
238
CONFIG
MODIFIED
Write event "Config
Modified" in log file when
configuration is modified.
Configuration is modified
239
NEW MOD
DETECTED
Write event "New Mod
Detected" in log file when
new module is seen by T2S
One more module is plugged
240
DATE & TIME
MOD
Write event "Date & Time
Mod" in log file when date
and/or time are modified
Date and time are modified
241
CFG READ IN
MOD
Write event "Cfg Read In
Mod" in log file when T2S
had read the configuration
file from TSI inverter.
Tipically after insterting new
T2S on live system.
T2S has read the CFG
242
LOG NEARLY
FULL
Generate alarm code 242
and text "Log Nearly full"
when the condition is true
This item will be set as, No
alarm, Minor or major alarm.
(see configuration file)
Clear log file
243
T2S FLASH
ERROR
Flash of T2S is corrupt and
has failed
T2S failure
Hardware problem. Replace T2S
026-069-B0 Rev G
9. System Specifications
Model
AMPS80-3-75
AMPS80-3-30
Input & Output Phase
120/208 V 3-ph
120/208 V 3-ph
Nominal Output Power (max)
7,500 to 75,000 VA
Output Power (resistive load)
AMPS80-2-40
AMPS80-2-20
120/240 V or
120/240 V or
120/208 V 2-pole
120/208 V 2-pole
7,500 to 30,000 VA
5,000 to 40,000 VA
5,000 to 20,000 VA
6,000 to 60,000 W
6,000 to 24,000 W
4,000 to 32,000 W
4,000 to 16,000 W
Maximum Output Current
208 Arms / phase
83 Arms / phase
167 Arms / phase
83 Arms / phase
Max. no. of 2,500 VA/2,000 W
inverter modules
30
12
16
8
Min. no. of 2,500 VA/2,000 W
inverter modules
3
3
2
2
Technology
Twin Sine Inverter (TSI); each module has DC input & AC input
Static Switch
Not required; each module has own static switch
Efficiency
94% AC-to-AC; 90% DC-to-AC (from 50% to 100% full load resistive)
Waveform
Pure sine wave
Output Power Factor
0.8
Transfer time
0 ms
Warranty
2 years
Inverter Module AC Output
Nominal Voltage (AC)
120 V
Voltage Accuracy
± 2%
Frequency
60 Hz, Same as input frequency
Inverter frequency accuracy
0.03%
THD (resistive load)
<1.5%
Transient load recovery time
0.4 ms
Soft start time
20 s
Max. crest factor at nominal
power
3.5
Short circuit overload capacity
10 x In for 20 msec in EPC mode (AC input)
Short term overload capacity
150% for 5 seconds
Permanent overload capacity
110%
026-069-B0 Rev G
97
Inverter Module AC Input
Nominal Voltage (AC)
Voltage Range
Input Power Factor
Frequency
Synchronization Range
120 V
90-140 (user adjustable)
>99%
60 Hz
57-63 Hz
Inverter Module DC Input
Nominal Voltage
Voltage Range (max)
Max DC input current @ 48 Vdc
Max DC input current @ 40 Vdc
Voltage Ripple
48 Vdc
40-60 Vdc (user adjustable)
1400 A / 560 A / 750 A / 375 A
1700 A / 680 A / 900 A / 450 A
<2 mV / <38 dbrnc
Unified System Controller with SNMP
Control & Monitoring
Display
Communication Ports
Configure, control and monitor Inverter & Rectifier modules via Internet
Explorer 7 and onwards
LCD Touchscreen display (160 x 160 pixels)
OK / Major / Minor 3-color LED display
Web-based GUI via Ethernet
RJ45 Ethernet Port
RS232 Craft Port
RS232 Modem Port (optional)
Controller I/O
Voltage Inputs
Temperature Inputs
Current Inputs
Bivoltage Inputs
Digital Inputs
Relay Outputs
2
2
4
2
8
8
Environmental Specifications
Operating Temperature (full load)
Storage Temperature
Relative Humidity
Operating Altitude
Thermal Dissipation Per Module
-20° to 40°C (-4° to 104°F)
-40° to 70°C (-40° to 158°F)
Up to 95%, non-condensing
Up to 1,500 m (4,900 ft) above sea level
437 BTU/hr in AC-to-AC mode & 758 BTU/hr in DC-to-AC mode
Mechanical Specifications
System Dimensions
D x W x H (mm/in)
System Weight -- without modules
(kg/lb)
Total Weight with modules
(kg/lb)
Inverter Module Dimensions
D x W x H (mm/in)
Inverter Module Weight (kg/lb)
680 mm x 600 mm x 2134 mm (26.75" x 23.6" x 84")
270 kg/595 lb
420 kg/925 lb
435 mm x 102 mm x 88.9 mm (17.13" x 4" x 3.5")
5 kg / 11 lb
Agency Compliance
CSA
UL
98
C22.2 107.3-05
UL1778; Issue 4
(shelves and modules)
026-069-B0 Rev G
9.1 Specifications for 48/120 Inverter Module
General specifications:
EMC (immunity)
EN 61000-4
EMC (emission)
EN55022 (Class A), FCC 47 VFR Part 15, class A
Safety
IEC 60950, UL 1778 Issue 4
Cooling
Forced Air
MTBF
240000 hrs
Efficiency (typical)
Enhanced Power Conversion
94%
On Line
89%
AC Output Power
Nominal
2500 VA
Resistive Load
2000 W
Overload Capacity (short)
150% @ 5 s
Overload Capacity (permanent)
110%
Nominal
48 V
Range (V dc)
40 to 60 V
Nominal Current (@40 Vdc)
56 A
Max input current (5 s)
84 A
Voltage Ripple
2 mV
AC Input Specifications
Nominal voltage (AC)
120 Vac
Voltage range (AC)
90 to 140 Vac (adjustable)
Power factor
> 99%
Frequency range (selectable)
60 Hz
Frequency Tolerance
± 3 Hz (Adjustable)
AC Output
Nominal (AC)*
120 Vac Accuracy 2%
Frequency
60 Hz (Same as input frequency in EPC mode)
Frequency accuracy
0.03%
Transient load recovery time
0.4 ms
Transfer Performance
Maximum Voltage interruption
0s
Total Transient voltage duration
0s
Environmental
Operating Temperature:
-20 to +40°C
Storage Temperature:
-40 to +70°C
Humidity:
Up to 95% non-condensing
Elevation:
<1500M
Miscellaneous
Dimensions:
2 RU H x 102 mm W x 435 mm D
Weight:
5 kg (11 lb.)
026-069-B0 Rev G
99
9.2 Specifications for 48-1.8 kW Rectifier
Rectifier Module Input Voltage, Output Current, Power
AC Input Voltage
Rectifier shelves
Max # of Rectifier
Modules
Max DC output VA
120
2
8
192 Adc
120/240 Vac
2
8
300 Adc
Current (Adc)
Power Module Output
Voltage
42 to 60 Vdc within rated limits
Current
37.5 A maximum @ 48 Vdc (nominal input)
~24 A @ 48 Vdc (115 Vac input)
Power
1800 W maximum @ nominal input
~1150 W @ 115 Vac input (de-rated linearly to 900 W @ 90 Vac)
Static Load Regulation
Dynamic Load Regulation
Better than ±0.5% for any load change within rated limits
Better than ±2% for 40% – 90% – 40% (50% load step)
[output shall recover to static limits within 10 ms]
Static Line Regulation
Dynamic Line Regulation
Better than ±0.1% for any change in input voltage within rated limits
Better than ±1% for any change in input voltage within rated limits (output
voltage shall recover to static limits within 2 ms)
Hold-up Time:
>10 ms
Time Stability:
=0.2% per year
Temperature Stability:
<170 ppm/°C over the operating range
Heat Dissipation:
<607 BTU per hour (per rectifier module)
Electrical Noise:
<32 dBrnC (voice band)
<30 mVrms 10 kHz to 10 MHz (wideband)
<150 mVp-p 10 kHz to 100 MHz
<1 mV (psophometric)
Acoustic Noise:
EMI:
100
<60 dBa @ 1 m (3 ft.) @ 30°C (86°F)
FCC Part 15, Class B:
026-069-B0 Rev G
10. Configuration Parameters
The inverter settings have their own configuration file which is not part of the full site configuration file. The
default configuration settings, described in the following sections, are presented in a logical manner, but in
reality they are one contiguous file. All available parameters are described in this section, though not all are
used in a basic installation.
CAUTION!
Configure parameters with care as mistakes will shut the system down with resulting power
loss to the load. Modifying the configuration settings, using a text editor, can have dire consequences and should be undertaken by advanced users only.
10.1 Transferring Inverter Settings to Another System
1. To transfer inverter settings to another system, first save the inverter configuration file to a local disc (Main
Menu > Inverters > Manage Config File).
2. Then browse to locate the file and upload it to the system at another site.
1
2
Figure 60 — Manage Config File window
10.2 Examples of Modifications to Configuration Parameters
10.2.1 Changing the Saturation Level Alarm
The saturation alarm threshold is the level of load that generates an alarm indicating there is a risk of overload. This parameter takes into account the redundancy already defined. For example, if a system has 4
modules and 1 is redundant –> 80 % of 3 modules.
1. Save the inverter configuration file to a local disk (Main Menu > Inverters > Manage Config File).
2. Open the file with a text editor.
3. Scroll down to the saturation alarm threshold:
;556;
;Saturation alarm threshold;
;100;
;%;
4. Change the default to desired value in the range 80 to 100%.
5. Save the file to the local disk.
6. Upload to the inverter system.
7. Save inverter configuration file to the local disk with a different name than before.
026-069-B0 Rev G
101
10.2.2 Changing the Synchronization Tracking Speed Operation
This parameter sets the speed with which the module tries to synchronize ACout.
1. Save the inverter configuration file to a local disk (Main Menu > Inverters > Manage Config File).
2. Open the file with a text editor.
3. Scroll down to Synchronization Tracking Speed
;100;
;Synchronization Tracking Speed;
;0;
;;
4. Change the default to one of the values from the following table:
Value
Tracking speed, Hz/sec
-2
2
-1
1
0
0.5
+1
0.25
+2
0.1
5. Save the file to the local disk.
6. Upload to the inverter system.
7. Save the inverter configuration file to the local disk with a different name than before.
10.2.3 Changing the Walk-in Mode for Generator Operation
Walk-in mode needs to be set if a generator is used in bypass mode. Walk in mode stops the oscillation that
causes DC mode to activate. It allows a progressive comeback, slowly removing DC power while slowly
increasing AC power.
1. Save the inverter configuration file to a local disk (Main Menu > Inverters > Manage Config File).
2. Open the file with a text editor.
3. Scroll down to Walk-in Mode
;62;
;Walk-in Mode (0 : No, 1 : Yes);
;0;
;;
4. Set the parameter to 1.
5. Save the file to the local disk.
6. Upload to the inverter system.
7. Save the inverter configuration file to the local disk with a different name than before.
102
026-069-B0 Rev G
10.3 Global Settings (ID 1 – 50)
;1;
;Number of inverter modules in phase 1;
;4;
;2;
;Number of inverter modules in phase 2;
;4;
;3;
;Number of inverter modules in phase 3;
;4;
xx
Number of inverters present (Here shown as 4 modules) in each phase
xx
Range: 0 - 32, Default: 1
xx
min:0 1 32
xx
(same value for ACin and ACout)
;21;
;Amount of redundancy in phase 1;
;1;
;22;
;Amount of redundancy in phase 2;
;1;
;23;
;Amount of redundancy in phase 3;
;1;
;40;
;41;
xx
Number of redundant inverters in each phase (Here shown as 1 module)
xx
Range: 0 - 32, Default: 0
xx
When no inverter failed = no alarm
xx
When # of inverters failed ≤ redundancy (if different than 0) = Minor alarm (non urgent)
xx
When # of inverters failed > redundancy = Major alarm (urgent)
;Number of DC input groups;
;1;
xx
Number of DC input groups
xx
Range: 1 - 8, Default: 1
xx
Allows inverters groups to be supplied from sets of batteries that are physically separated
;Number of AC input groups;
xx
Number of AC input groups
xx
Range: 1 - 4, Default: 1
026-069-B0 Rev G
;1;
103
10.4 Inverter Parameters (ID 51 – 550)
;60;
;61;
;62;
;70;
;71;
;75;
;Input Source (AC : 0, DC : 100);
;%;
xx
Record of priority source
xx
0 –> Priority feed from ACin (converter AC/AC - AC/AC mode), Default setting
xx
100 –> Priority feed from DC (converter DC/AC - On Line mode)
;ACin Mode (0 : normal, 1 : Safe);
;0;
;;
xx
Opens the ACin inlet relay
xx
0 –> Normal running in AC/AC mode, Default setting
xx
1 –> ACin inlet relay is open and so the system is insulated from the Mains
;Walk-in Mode (0 : No, 1 : Yes) ;
;1;
;;
xx
Walk-in mode allows a progressive comeback, slowly removing DC power while slowly
increasing AC power
xx
0 –> no progressive switching
xx
1 –> progressive switching at 10% per second
;Number of phases
;
;3;
;;
xx
Record of number of phases : 1 (Single phase), 2 (2 phase), 3 (3 phase)
xx
Range: 0 - 8, Default: 1
;Mode (0 star; 1 Delta)
;
;1;
;;
xx
Record of the protection for working on Delta load
xx
The mode, star or delta, allows configuration of automatic protection when the load is a
delta connection (an engine for instance). This protects the load when 1 phase is lost. The
protection consists of switching off all inverters.
xx
0 –> no delta load protection, Default setting
xx
1 –> Delta load protection available
;Free running Frequency
xx
104
;0;
;
;50.0;
;Hz;
Record of the Inverters system frequency, 50 or 60 (default)
026-069-B0 Rev G
;80;
;81;
;82;
;Short Circuit Voltage Threshold;
;91;
;92;
;100;
;V;
xx
Minimum Voltage Threshold where module considers that outlet is in short circuit
xx
Adjustable from 20 to 100 Vac, default: 80 Vac
;Short Circuit Hold Time;
;60.0;
; sec;
xx
Time Duration when the module tries to eliminate the short-circuit existing on the outlet
xx
When this time expires and the voltage is less than the value on line 80, the module stops.
xx
Adjustable from 0.1 to 600 sec, default: 60 sec
;Booster 10 x Iin (0 : OFF, 1 : ON) ;
xx
;90;
;80;
;1;
;;
Turns off the Booster option which generates a current of 10 x Iin for 20ms in case of shortcircuit.
;Max current (as percentage of nominal current);
xx
Maximum Current that module can supply.
xx
Adjustable from 100 to 110 % for AIM2500
;Max power (as percentage of of nominal power) ;
;110;
;%;
;110;
;%;
xx
Maximum Power that the module can supply.
xx
ALWAYS RECORD THE SAME VALUES for 90 and 91
;Max Overload Duration);
;15;
;sec;
xx
Maximum Time Duration when module can run with overload.
xx
Adjustable from 0 to 15 sec, default: 15 sec
;Synchronization Tracking Speed;
;0;
xx
Speed with which the module tries to synchronize ACout
xx
Possible values:
Speed
026-069-B0 Rev G
Value
Frequency (Hz/sec)
very fast
-2
2.5
fast
-1
1.25
normal (default)
0
0.5
slow
1
0.25
very slow
2
0.1
;;
105
;101;
;102;
;Remote OFF disable ACin Power;
xx
0 –> Normal mode, default
xx
1 –> ACin power is de-activated
;Negative Power (0 : OFF, 1 : ON);
xx
;103;
;0;
;;
;1;
;;
;0;
;;
1 –> ON, default
;External clock (0 : OFF, 1 : ON);
xx
0 no in service protection
xx
1 in service protection
;160;
;OUT 1 : phase shift (-180 to 360, default 0);
;0;
;deg;
;161;
;OUT 1 : Nominal Output Voltage (100 to 140);
;120;
;V;
xx
Record of the phase shift and nominal Outlet voltage.
xx
Phase shift range: -180 to 360, default: 0 deg
xx
Nominal output voltage range: 100 to 140, default: 120 V
;170;
;OUT 2 : phase shift;
;120;
;deg;
;171;
;OUT 2 : Nominal Output Voltage;
;120;
;V;
xx
Record the phase shift and the nominal Outlet voltage.
xx
Range and defaults same as OUT 1
;180;
;OUT 3 : phase shift;
;240;
;deg;
;181;
;OUT 3 : Nominal Output Voltage;
;120;
;V;
xx
Record the phase shift and the nominal Outlet voltage.
xx
Range and defaults same as OUT 1
Parameters for DC Groups
;260;
106
;DC 1 : Vdc_in Low Start;
;49;
;V;
xx
Low DC Voltage – a higher value causes the converter DC/AC to re-start
xx
Range: 39 to 61, default: 49 V
026-069-B0 Rev G
;261;
;262;
;263;
;264;
;265;
;DC 1 : Vdc_in Low Transfer;
;42;
;V;
xx
Low DC Voltage – a lower value transfers the load from DC/AC to AC/AC converter.
xx
Range: 39 to 61, default: 42 V
;DC 1 : Vdc_in Low Stop;
;42;
;V;
xx
Low DC Voltage – a lower value causes the DC/AC converter to stop.
xx
Range: 39 to 61, default: 42 V
;DC 1 : Vdc_in High Start;
;58;
;V;
xx
High DC voltage – a higher value re-starts the DC/AC converter
xx
Range: 39 to 61, default: 58 V
;DC 1 : Vdc_in High Transfer;
;61;
;V;
xx
High DC Voltage – a higher value transfers the load from DC/AC to AC/AC converter
xx
Range: 39 to 61, default: 61 V
;DC 1 : Vdc_in High Stop;
;61;
;V;
xx
High DC voltage – a higher value stops the DC/AC converter.
xx
Range: 39 to 61, default: 61 V
;270;
;DC 2 : Vdc_in Low Start;
;49;
;V;
;271;
;DC 2 : Vdc_in Low Transfer;
;42;
;V;
;272;
;DC 2 : Vdc_in Low Stop;
;42;
;V;
;273;
;DC 2 : Vdc_in High Start;
;58;
;V;
;274;
;DC 2 : Vdc_in High Transfer;
;61;
;V;
;275;
;DC 2 : Vdc_in High Stop;
;61;
;V;
xx
The same as Group DC 1
;280;
;DC 3 : Vdc_in Low Start;
;49;
;V;
;281;
;DC 3 : Vdc_in Low Transfer;
;42;
;V;
;282;
;DC 3 : Vdc_in Low Stop;
;42;
;V;
;283;
;DC 3 : Vdc_in High Start;
;58;
;V;
;284;
;DC 3 : Vdc_in High Transfer;
;61;
;V;
;285;
;DC 3 : Vdc_in High Stop;
;61;
;V;
xx
026-069-B0 Rev G
The same as Group DC 1
107
;290;
;DC 4 : Vdc_in Low Start;
;49;
;V;
;291;
;DC 4 : Vdc_in Low Transfer;
;42;
;V;
;292;
;DC 4 : Vdc_in Low Stop;
;42;
;V;
;293;
;DC 4 : Vdc_in High Start;
;58;
;V;
;294;
;DC 4 : Vdc_in High Transfer;
;61;
;V;
;295;
;DC 4 : Vdc_in High Stop;
;61;
;V;
xx
The same as Group DC 1
;300;
;DC 5 : Vdc_in Low Start;
;49;
;V;
;301;
;DC 5 : Vdc_in Low Transfer;
;42;
;V;
;302;
;DC 5 : Vdc_in Low Stop;
;42;
;V;
;303;
;DC 5 : Vdc_in High Start;
;58;
;V;
;304;
;DC 5 : Vdc_in High Transfer;
;61;
;V;
;305;
;DC 5 : Vdc_in High Stop;
;61;
;V;
xx
The same as Group DC 1
Synchronization with ACin source
;370;
;AC : Fac_in Low Start;
xx
;371;
;372;
;375;
;Hz;
;62.7;
;Hz;
Above this value and less than parameter 375, the inverters will try to synchronize with the
ACin frequency
;AC : Fac_in High Stop;
xx
;57.0;
Below this value the inverters will stop trying to synchronize with the ACin frequency
;AC : Fac_in High Start;
xx
;Hz;
Below this value and above parameter 371, the inverters will try to synchronize with the
ACin frequency
;AC : Fac_in Low Stop;
xx
; 57.3;
;63;
;Hz;
Above this value, the inverters will trying stop to synchronize with ACin
Parameters for AC Groups
;380;
108
;AC 1 : Vac_in Low Start;
;91.5;
;V;
xx
ACin Voltage where a higher value causes the converter AC/AC to start
xx
Range: 83 to 143, default: 91.5 V
026-069-B0 Rev G
;381;
;382;
;383;
;AC 1 : Vac_in Low Transfer;
ACin Voltage where a lower value transfers the load from the AC/AC converter to the DC/
AC converter
xx
Range: 80 to 143, default: 81.5 V
;AC 1 : Vac_in Low Stop;
; 81.5;
;V;
xx
ACin Voltage where a lower value causes the AC/AC converter to stop
xx
It is possible to step down to 150 Vac. In this case, the AC/DC converter runs at a lower
power. The DC/DC converter supplies the rest (ONLY if DC is available, if not, there is a
derating)
;AC 1 : Vac_in High Start;
;V;
;143;
;V;
ACin Voltage where a higher value transfers the load of the charge from the converter AC/
AC to the DC/AC converter
;AC 1 : Vac_in High Stop;
xx
; 140;
ACin Voltage where a lower value causes the AC/AC converter to re-start
;AC 1 : Vac_in High Transfer;
xx
;385;
;V;
xx
xx
;384;
;81.5;
;143;
;V;
ACin Voltage where a higher value causes the AC/AC converter to stop
;390;
;AC 2 : Vac_in Low Start;
;91.5
;V;
;391;
;AC 2 : Vac_in Low Transfer;
;81.5;
;V;
;392;
;AC 2 : Vac_in Low Stop;
;81.5;
;V;
;393;
;AC 2 : Vac_in High Start;
;140;
;V;
;394;
;AC 2 : Vac_in High Transfer;
;143;
;V;
;395;
;AC 2 : Vac_in High Stop;
;143;
;V;
xx
The same for Group AC 1
;400;
;AC 3 : Vac_in Low Start;
;91.5
;V;
;401;
;AC 3 : Vac_in Low Transfer;
;81.5;
;V;
;402;
;AC 3 : Vac_in Low Stop;
;81.5;
;V;
;403;
;AC 3 : Vac_in High Start;
;140;
;V;
;404;
;AC 3 : Vac_in High Transfer;
;143;
;V;
;405;
;AC 3 : Vac_in High Stop;
;143;
;V;
xx
026-069-B0 Rev G
The same for Group AC 1
109
10.5 Alarm Settings (ID 551-950)
Global Parameters (ID: 551-600)
;551;
;553;;
;Alarm on prog. relay (255 is NU);
Replace 255 by the Alarm Code you wish for programming the relay user selectable 3
xx
See previous codes for the T2S and Enclosed list for the TSI.
;MAJ relay temporization;
;558;
;570;
;60;
;sec;
Temporization of Urgent alarm (from 0 to 65536 sec)
;MIN relay temporization;
xx
;556;
;;
xx
xx
;554;
;255;
;30;
;sec;
High DC voltage – a higher value re-starts the DC/AC converter
;Saturation alarm threshold;
;100;
;%;
xx
Level of load that generates an alarm indicating there is a risk of overload.
xx
This parameter takes into account the redundancy defined previously
xx
I.e. P ex : system with 4 modules with 1 redundant –> 80 % of 3 modules
;ACin is present (1:true 0:false);
;1;
;;
xx
Allow to inhibit the alarm when ACin not Present
xx
1 –> gives alarm when main Network is not Present
xx
0 –> no alarm when main Network is not Present (AC in not available or Regular inverter)
;Log near. full thresh. (100-200);
xx
;180;
;;
Number of messages in the Logfile. It is from the Logfile that alarm is generated when the
Logfile is about completed.
Configuration of types of Alarms
- Alarm Type (ID : 601 - 900) : Minor(1) - Major(2) - No Alarm(0)
;828;
xx
Choice for type of alarms as detailed hereafter
xx
No Alarm = 0 / Minor = 1 / Major = 2
;227.DIG INP1 FAILURE;
xx
110
;0;
;;
Type of alarms for Digital inlet 1 (Inlet to be configured by user)
026-069-B0 Rev G
;829;
;228.DIG INP2 FAILURE;
xx
;830;
;831;
;832;
;833;
;834;
;835;
;;
;1;
;2;
xx
Type of alarm when Main source is lost
xx
In AIM2500 mode : Main source is ACin = Network
xx
In ON LINE mode : Main source is DCin = battery
;233.SEC SOURCE LOST;
;;
;1;
;;
;;
xx
Activates when Secondary source is lost
xx
In AC/AC mode : Secondary Source is DCin = battery
xx
In ON LINE mode : Secondary Source is ACin = Network
;234.T2S BUS FAIL;
026-069-B0 Rev G
;;
;2;
;;
;0;
;;
Activates when the T2S is not running
;242.LOG NEARLY FULL;
xx
;2;
Activates when the T2S is lost
;235.T2S FAILURE;
xx
;843;
;2;
Type of alarms when the threshold of pre-alarm “overload” is exceeded
;232.MAIN SOURCE LOST;
xx
;836;
;;
Activates when more than # of modules of redundancy are lost
;231.SYS SATURATED;
xx
;1;
Activates when redundancy is lost
;230.REDUND + 1 LOST;
xx
;;
Type of alarms for Digital inlet 2 (Inlet to be configured by user)
;229.REDUNDANCY LOST;
xx
;0;
Activates when the logfile is nearly full
111
;845;
;244. Check log file;
xx
;846;
;847;
112
;1;
;;
Type of alarm when the DC voltage for DC GROUP 1 is lower or equal than “Vdc in Low
transfer” and mains is not present.
;246 Shutdown DC 2 -> DC 8;
xx
;;
Type of alarm when abnormal conditions are present as, transient communication problem,
plug/ unplug inverter. When time is not reached for activating the output relay alarm.
;245. Shutdown DC 1;
xx
;1;
;1;
;;
Type of alarm when the DC voltage for DC GROUP 2 up DC GROUP 8 are lower or equal
than “Vdc in Low transfer” and mains is not present.
026-069-B0 Rev G
11. Certification
About CSA and NRTL
CSA (Canadian Standards Association also known as CSA International) was established in 1919 as an independent testing laboratory in Canada. CSA received its recognition as an NRTL (Nationally Recognized Testing Laboratory) in 1992 from OSHA
(Occupational Safety and Health Administration) in the United States of America (Docket
No. NRTL-2-92). This was expanded and renewed in 1997, 1999, and 2001. The specific
notifications were posted on OSHA’s official website as follows:
•
Federal Register #: 59:40602 - 40609 [08/09/1994]
•
Federal Register #: 64:60240 - 60241 [11/04/1999]
•
Federal Register #: 66:35271 - 35278 [07/03/2001]
When these marks appear with the indicator “C and US” or “NRTL/C” it means that the
product is certified for both the US and Canadian markets, to the applicable US and
Canadian standards. (1)
Alpha rectifier and power system products, bearing the aforementioned CSA marks, are
certified to CSA C22.2 No. 950 and UL 1950, or CSA/UL 60950. Alpha UPS products,
bearing the aforementioned CSA marks, are certified to CSA C22.2 No. 107.3 and UL
1778.
As part of the reciprocal, US/Canada agreement regarding testing laboratories, the
Standards Council of Canada (Canada’s national accreditation body) granted Underwriters Laboratories (UL) authority to certify products for sale in Canada. (2)
Only Underwriters Laboratories may grant a licence for the use of
this mark, which indicates compliance with both Canadian and US
requirements. (3)
NRTLs capabilities
NRTLs are third party organizations recognized by OSHA, US Department of Labor, under the NRTL program.
The testing and certifications are based on product safety standards
developed by US based standards developing organizations and are
often issued by the American National Standards Institute (ANSI). (4)
The NRTL determines that a product meets the requirements of an
appropriate consensus-based product safety standard either by
successfully testing the product itself, or by verifying that a contract
laboratory has done so, and the NRTL certifies that the product meets the requirements of the product safety
standard. (4)
Governance of NRTL
The NRTL Program is both national and international in scope with foreign labs permitted.
(1) www.csagroup.org
(2) www.scc.ca
(3) www.ulc.ca
(4) www.osha.gov
026-069-B0 Rev G
113
12. Warranty
Alpha Technologies Ltd. warrants all equipment manufactured by it to be free from defects in parts and labor,
for a period of two years from the date of shipment from the factory. The warranty provides for repairing,
replacing or issuing credit (at Alpha’s discretion) for any equipment manufactured by it and returned by the
customer to the factory or other authorized location during the warranty period. There are limitations to this
warranty coverage. The warranty does not provide to the customer or other parties any remedies other than
the above. It does not provide coverage for any loss of profits, loss of use, costs for removal or installation
of defective equipment, damages or consequential damages based upon equipment failure during or after
the warranty period. No other obligations are expressed or implied. Warranty also does not cover damage or
equipment failure due to cause(s) external to the unit including, but not limited to, environmental conditions,
water damage, power surges or any other external influence.
The customer is responsible for all shipping and handling charges. Where products are covered under warranty Alpha will pay the cost of shipping the repaired or replacement unit back to the customer.
114
026-069-B0 Rev G
Alpha Technologies Ltd.
7700 Riverfront Gate
Burnaby, BC V5J 5M4
Canada
Tel: +1 604 436 5900
Fax: +1 604 436 1233
Toll Free: +1 800 667 8743
Alpha Energy,
Alpha Technologies Inc.
3767 Alpha Way
Bellingham, WA 98226
United States
Tel: +1 360 647 2360
Fax: +1 360 671 4936
Alpha Industrial Power Inc.
1075 Satellite Blvd NW,
Suite 400
Suwanee, GA 30024
United States
Tel: +1 678 475 3995
Fax: +1 678 584 9259
Outback Power
5917 195th St NE,
Arlington, WA 98223
United States
Tel: +1 360 435 6030
Fax: +1 360 435 6019
Alpha Technologies GmbH
Hansastrasse 8
D-91126
Schwabach, Germany
Tel: +49 9122 79889 0
Fax: +49 9122 79889 21
Alpha Technologies S.A.
131 Boulevard de l’Europe
1301 Wavre
Belgium
Tel: +32 10 438 510
Fax: +32 10 438 213
Alpha Technologies Europe Ltd.
Twyford House Thorley
Bishop’s Stortford
Hertfordshire, CM22 7PA
United Kingdom
Tel: +44 1279 501110
Fax: +44 1279 659870
Alphatec Ltd.
339 St. Andrews St.
Suite 101 Andrea Chambers
P.O. Box 56468
3307 Limassol, Cyprus
Tel: +357 25 375 675
Fax: +357 25 359 595
Alpha TEK ooo
Khokhlovskiy Pereulok 16
Stroenie 1, Office 403
Moscow, 109028
Russia
Tel: +7 495 916 1854
Fax: +7 495 916 1349
Alpha Technologies
Suite 1903, 191F., Tower 1,
33 Canton Rd. Tsim Sha Tsui
China, Hong Kong City,
Kowloon, Hong Kong
Tel: +852 2736 8663
Fax: +852 2199 7988
Alpha Innovations Brasil
Rua Manuel Augusto
de Alvarenga, 155
São Paulo, SP - Brasil
Tel: +55 11 2476 0150
Fax: +55 11 2476 0150
Alphatec Baltic
S. Konarskio Street 49-201
Vilnius, LT-03123
Lithuania
Tel: +370 5 210 5291
Fax: +370 5 210 5292
For technical support, contact Alpha Technologies:
Canada and USA: 1-888-462-7487
International: +1-604-436-5547
Visit us at www.alpha.ca
Due to continuing product development, Alpha Technologies reserves the right to change specifications without notice.
Copyright © 2013 Alpha Technologies. All Rights Reserved. Alpha® is a registered trademark of Alpha Technologies.