* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Figure 55 - We can`t sign you in
Audio power wikipedia , lookup
Electrical substation wikipedia , lookup
History of electric power transmission wikipedia , lookup
Current source wikipedia , lookup
Control system wikipedia , lookup
Flip-flop (electronics) wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Power engineering wikipedia , lookup
Stray voltage wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Mercury-arc valve wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Voltage optimisation wikipedia , lookup
Voltage regulator wikipedia , lookup
Two-port network wikipedia , lookup
Distribution management system wikipedia , lookup
Integrating ADC wikipedia , lookup
Alternating current wikipedia , lookup
Three-phase electric power wikipedia , lookup
Mains electricity wikipedia , lookup
Schmitt trigger wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Buck converter wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Opto-isolator wikipedia , lookup
AMPS80 HP Power System Installation & Operation Manual Part #026-069-B0 Effective 4/2013 member of The Group™ Your Power Solutions Partner AMPS80 HP Power System NOTE: Photographs contained in this manual are for illustrative purposes only. These photographs may not match your installation. NOTE: Operator is cautioned to review the drawings and illustrations contained in this manual before proceeding. If there are questions regarding the safe operation of this powering system, contact Alpha Technologies or your nearest Alpha representative. NOTE: Alpha shall not be held liable for any damage or injury involving its enclosures, power supplies, generators, batteries, or other hardware if used or operated in any manner or subject to any condition not consistent with its intended purpose, or is installed or operated in an unapproved manner, or improperly maintained. For technical support, contact Alpha Technologies: Canada and USA: 1-888-462-7487 International: +1-604-436-5547 Copyright Copyright © 2013 Alpha Technologies Ltd. All rights reserved. Alpha is a registered trademark of Alpha Technologies. No part of this documentation shall be reproduced, stored in a retrieval system, translated, transcribed, or transmitted in any form or by any means manual, electric, electronic, electromechanical, chemical, optical, or otherwise without prior explicit written permission from Alpha Technologies. This documentation, the software it describes, and the information and know-how they contain constitute the proprietary, confidential and valuable trade secret information of Alpha Technologies, and may not be used for any unauthorized purpose, or disclosed to others without the prior written permission of Alpha Technologies. The material contained in this document is for information only and is subject to change without notice. While reasonable efforts have been made in the preparation of this document to assure its accuracy, Alpha Technologies assumes no liability resulting from errors or omissions in this document, or from the use of the information contained herein. Alpha Technologies reserves the right to make changes in the product design without reservation and without notification to its users. 026-069-B0 Rev G 1 Table of Contents 1. Safety������������������������������������������������������������������������������������������������������������������������������ 6 1.1 Safety Symbols����������������������������������������������������������������������������������������������������������������������������� 6 1.2 General Safety������������������������������������������������������������������������������������������������������������������������������ 7 1.3 External Battery Safety����������������������������������������������������������������������������������������������������������������� 8 1.4 Utility Power Connection��������������������������������������������������������������������������������������������������������������� 8 1.5 Equipment Grounding������������������������������������������������������������������������������������������������������������������� 9 2. Product Description������������������������������������������������������������������������������������������������������ 10 2.1 Theory of Operation�������������������������������������������������������������������������������������������������������������������� 10 2.2 System Components������������������������������������������������������������������������������������������������������������������� 12 2.3 Rear Components����������������������������������������������������������������������������������������������������������������������� 13 2.4 Module Location Relative to System Wiring������������������������������������������������������������������������������� 14 3. AC and DC Power Configurations�������������������������������������������������������������������������������� 18 3.1 Power System Configuration Terminology���������������������������������������������������������������������������������� 18 3.2 3-Phase Systems – Recommended AC and DC Breakers��������������������������������������������������������� 19 3.3 120V/240V Split Phase or 120/208V 2-Pole Systems���������������������������������������������������������������� 22 3.4 DC Fuse/Breaker ����������������������������������������������������������������������������������������������������������������������� 25 3.5 AMPS80 DC Feed Options��������������������������������������������������������������������������������������������������������� 26 3.6 How to Configure Inverters in AC Input Groups, AC Output Groups and DC Input Groups������� 27 4. System Pre-Installation������������������������������������������������������������������������������������������������� 29 4.1 Site Selection������������������������������������������������������������������������������������������������������������������������������ 29 4.2 Recommended Installation Layout���������������������������������������������������������������������������������������������� 30 4.3 Option for DC input into AMPS80����������������������������������������������������������������������������������������������� 31 4.4 Wiring for Generator and/or External MBS��������������������������������������������������������������������������������� 32 4.5 Transporting the Cabinet������������������������������������������������������������������������������������������������������������� 33 4.6 Unpacking Instructions���������������������������������������������������������������������������������������������������������������� 34 4.7 Anchoring the Cabinet����������������������������������������������������������������������������������������������������������������� 35 5. System Installation�������������������������������������������������������������������������������������������������������� 40 5.1 Input/Output Cabling Overview��������������������������������������������������������������������������������������������������� 42 5.2 AC Connections�������������������������������������������������������������������������������������������������������������������������� 43 5.3 DC Connections�������������������������������������������������������������������������������������������������������������������������� 44 2 026-069-B0 Rev G 5.4 Commissioning the System for the First Time���������������������������������������������������������������������������� 48 6. System Operation��������������������������������������������������������������������������������������������������������� 56 6.1 Inverter Module Indicators���������������������������������������������������������������������������������������������������������� 56 6.2 T2S Inverter Control Card����������������������������������������������������������������������������������������������������������� 58 6.3 Using the CXC Unified System Controller���������������������������������������������������������������������������������� 59 6.4 Rectifier Features������������������������������������������������������������������������������������������������������������������������ 73 6.5 Synchronization with a Maintenance Bypass Switch (MBS)������������������������������������������������������� 77 7. Maintenance����������������������������������������������������������������������������������������������������������������� 78 7.1 Preventive Maintenance������������������������������������������������������������������������������������������������������������� 78 7.2 Recommended maintenance schedule��������������������������������������������������������������������������������������� 78 7.3 Tools, Spare Parts and Equipment��������������������������������������������������������������������������������������������� 78 7.4 Replacing the T2S Inverter Control Card������������������������������������������������������������������������������������ 80 7.5 Inverter or Rectifier Fan Replacement���������������������������������������������������������������������������������������� 81 7.6 Replacing an AIM2500/1500 Inverter Module���������������������������������������������������������������������������� 82 7.7 Surge Suppression Replacement����������������������������������������������������������������������������������������������� 83 7.8 Fuse Replacement���������������������������������������������������������������������������������������������������������������������� 85 7.9 Synchronization After Maintenance or Repair����������������������������������������������������������������������������� 86 8. Troubleshooting������������������������������������������������������������������������������������������������������������ 87 8.1 Non Recoverable Error��������������������������������������������������������������������������������������������������������������� 87 8.2 Recoverable Error����������������������������������������������������������������������������������������������������������������������� 87 8.3 Alarm Codes������������������������������������������������������������������������������������������������������������������������������� 88 9. System Specifications��������������������������������������������������������������������������������������������������� 97 9.1 Specifications for 48/120 Inverter Module����������������������������������������������������������������������������������� 99 9.2 Specifications for 48-1.8 kW Rectifier��������������������������������������������������������������������������������������� 100 10. Configuration Parameters����������������������������������������������������������������������������������������� 101 10.1 Transferring Inverter Settings to Another System������������������������������������������������������������������� 101 10.2 Examples of Modifications to Configuration Parameters�������������������������������������������������������� 101 10.3 Global Settings (ID 1 – 50)������������������������������������������������������������������������������������������������������ 103 10.4 Inverter Parameters (ID 51 – 550)������������������������������������������������������������������������������������������ 104 10.5 Alarm Settings (ID 551-950)�����������������������������������������������������������������������������������������������������110 11. Certification����������������������������������������������������������������������������������������������������������������113 12. Warranty��������������������������������������������������������������������������������������������������������������������114 026-069-B0 Rev G 3 List of Figures Figure 1 — Controller breakers on top of the AMPS80���������������������������������������������������������������������� 13 Figure 2 — 20 kVA split-phase or 120/208V 2-pole system��������������������������������������������������������������� 14 Figure 3 — 40 kVA, split-phase or 120/208V 2-pole system������������������������������������������������������������� 15 Figure 4 — 75 kVA, 3-phase systems������������������������������������������������������������������������������������������������ 16 Figure 5 — 30 kVA, 3-phase system������������������������������������������������������������������������������������������������� 17 Figure 6 — Split Phase from a Single phase supply������������������������������������������������������������������������� 18 Figure 7 — 2-Pole from a 3-phase supply����������������������������������������������������������������������������������������� 18 Figure 8 — Monitotring AC Input Groups, AC Output Groups and DC Input Groups������������������������ 27 Figure 9 — Inverter mapping for AC and DC Groups������������������������������������������������������������������������ 28 Figure 10 — Installation layout and clearances��������������������������������������������������������������������������������� 30 Figure 11 — Top front view showing installing of brackets in kit #7400448-001�������������������������������� 31 Figure 12 — System Schematic with Generator and MBS���������������������������������������������������������������� 32 Figure 13 — Arrangement of lifting eyes on top of cabinet���������������������������������������������������������������� 33 Figure 14 — Mounting hole pattern��������������������������������������������������������������������������������������������������� 35 Figure 15 — Single AC feed�������������������������������������������������������������������������������������������������������������� 36 Figure 16 — Dual AC Feed���������������������������������������������������������������������������������������������������������������� 36 Figure 17 — Rectifier terminal block�������������������������������������������������������������������������������������������������� 37 Figure 18 — Representative system wiring for AMPS inverter or hybrid system with MBS with single AC input feed.������������������������������������������������������������������������������������������������������������������������� 39 Figure 19 — Representative system wiring for AMPS inverter system with independent AC input feed for MBS����������������������������������������������������������������������������������������������������������������������������������� 39 Figure 20 — Battery and power connections������������������������������������������������������������������������������������� 41 Figure 21 — Top view of AMPS80 showing AC and DC connection partitions���������������������������������� 42 Figure 22 — AC Connections������������������������������������������������������������������������������������������������������������ 43 Figure 23 — DC connections - top view�������������������������������������������������������������������������������������������� 44 Figure 24 — Cabling and hardware arrangement������������������������������������������������������������������������������ 44 Figure 25 — DC connection dimensions – front view������������������������������������������������������������������������ 45 Figure 26 — DC tie bar for single battery string��������������������������������������������������������������������������������� 46 Figure 27 — DC tie bar for two battery strings����������������������������������������������������������������������������������� 47 Figure 28 — Controller default home screen������������������������������������������������������������������������������������� 49 Figure 29 — Seed modules shown for 40 kVA, split-phase systems������������������������������������������������� 50 4 026-069-B0 Rev G Figure 30 — Inverter module showing AC input LED������������������������������������������������������������������������ 50 Figure 31 — Unlocking and locking an inverter module for removal or insertion������������������������������� 51 Figure 32 — Inserting and removing an inverter module������������������������������������������������������������������� 51 Figure 33 — Inverters > View Live Status����������������������������������������������������������������������������������������� 52 Figure 34 — Matching AC Input Groups to AC Output Groups��������������������������������������������������������� 53 Figure 35 — Inserting blanks in open slots���������������������������������������������������������������������������������������� 55 Figure 36 — Fig. 4.1 Inverter module status, power LEDs��������������������������������������������������������������� 56 Figure 37 — Output power indicator LEDs���������������������������������������������������������������������������������������� 57 Figure 38 — T2S front panel�������������������������������������������������������������������������������������������������������������� 58 Figure 39 — CXC system controller�������������������������������������������������������������������������������������������������� 59 Figure 40 — LCD active areas����������������������������������������������������������������������������������������������������������� 61 Figure 41 — Password entry pop-up window������������������������������������������������������������������������������������ 61 Figure 42 — Navigation screen��������������������������������������������������������������������������������������������������������� 62 Figure 43 — Illustration of web interface window (sample home page)�������������������������������������������� 63 Figure 44 — View live status page���������������������������������������������������������������������������������������������������� 64 Figure 45 — View live status — inverters page��������������������������������������������������������������������������������� 64 Figure 46 — View group status window — inverters page���������������������������������������������������������������� 65 Figure 47 — Group mapping window������������������������������������������������������������������������������������������������ 66 Figure 48 — Set input window ���������������������������������������������������������������������������������������������������������� 67 Figure 49 — Set Output window ������������������������������������������������������������������������������������������������������� 68 Figure 50 — General settings window ���������������������������������������������������������������������������������������������� 69 Figure 51 — Manage Config File window ����������������������������������������������������������������������������������������� 69 Figure 52 — Configure alarms window ��������������������������������������������������������������������������������������������� 70 Figure 53 — T2S alarms in event logs����������������������������������������������������������������������������������������������� 71 Figure 54 — Retrieve inverter alarm history file��������������������������������������������������������������������������������� 71 Figure 55 — Signals (inverters) window ������������������������������������������������������������������������������������������� 72 Figure 56 — Cordex CXRF 48 V rectifier������������������������������������������������������������������������������������������� 73 Figure 57 — T2S LED sequence during initialization������������������������������������������������������������������������ 80 Figure 58 — Update Inventory steps������������������������������������������������������������������������������������������������� 81 Figure 59 — Rectifier fuse locations�������������������������������������������������������������������������������������������������� 85 Figure 60 — Manage Config File window���������������������������������������������������������������������������������������� 101 026-069-B0 Rev G 5 1. Safety SAVE THESE INSTRUCTIONS: This manual contains important safety instructions that must be followed during the installation, servicing, and maintenance of the product. Keep it in a safe place. Review the drawings and illustrations contained in this manual before proceeding. If there are any questions regarding the safe installation or operation of this product, contact Alpha Technologies or the nearest Alpha representative. Save this document for future reference. 1.1 Safety Symbols To reduce the risk of injury or death, and to ensure the continued safe operation of this product, the following symbols have been placed throughout this manual. Where these symbols appear, use extra care and attention. The use of ATTENTION indicates specific regulatory/code requirements that may affect the placement of equipment and /or installation procedures. NOTE: A NOTE provides additional information to help complete a specific task or procedure. Notes are designated with a checkmark, the word NOTE, and a rule beneath which the information appears. CAUTION! CAUTION indicates safety information intended to PREVENT DAMAGE to material or equipment. Cautions are designated with a yellow warning triangle, the word CAUTION, and a rule beneath which the information appears. WARNING! WARNING presents safety information to PREVENT INJURY OR DEATH to personnel. Warnings are indicated by a shock hazard icon, the word WARNING, and a rule beneath which the information appears. HOT! The use of HOT presents safety information to PREVENT BURNS to the technician or user. 6 026-069-B0 Rev G 1.2 General Safety • Only qualified personnel shall install, operate, and service the power system and components. • Observe all applicable national and local electrical and building codes during installation. • Maintain the security of all SELV Circuits in the AMPS80 when connecting to other equipment like signaling/alarm circuits, emergency power off (EPO) circuits, relay contacts, Ethernet or CANBUS. The other equipment must be the same circuit type. • Bolt the AMPS80 HP system securely to the floor. • Always assume electrical connections and/or conductors are live. • Turn off all circuit breakers and double-check potentially charged components with a voltmeter before performing installation or maintenance. • Before installation, verify that the input voltage and current requirements of the load are within the specifications of the power system. Refer to the product nameplate label. • Keep tools away from walk areas to prevent personnel from tripping over the tools. • Wear safety glasses when working under any conditions that may be hazardous to your eyes. • Do not work on the power system, or connect or disconnect cables, during atmospheric lightning activity. • Do not let water enter the enclosure as this can cause electrical shorts, shocks, or electrocutions. • Do not remove the covers of electrical components as this can cause electrical shorts, shocks or electrocutions. There are no user serviceable parts inside. • The power system is certified for use in restricted access locations only. • All operators must be trained to perform the emergency shutdown procedure. • For Hybrid UPS configurations, see section 8 to replace internal fuses. • The power system must be connected only to a dedicated branch circuit. • Equip the utility service panel with a circuit breaker of appropriate rating. • Do not exceed the output rating of the system when connecting the load. • External metal surface temperatures on the rear of the AMPS80 HP system can exceed 70°C. Use caution when working around the equipment while it is in operation. • Always use proper lifting techniques when handling units, modules, or batteries. • The power system contains more than one live circuit. Voltage may still be present at the output even when the input voltage is disconnected. • Minimize the risk of sparks and wear on the connectors. Always switch off the inverter’s battery circuit breaker before connecting or disconnecting the battery pack. • In the event of a short-circuit, batteries present a risk of electrical shock and burns from high currents. Observe proper safety precautions. • Always wear protective clothing, such as insulated gloves, and safety glasses or a face shield when working with batteries. • Carry a supply of water, such as a water jug, to wash eyes or skin in case of exposure to battery electrolyte. • Do not allow live battery wires to contact the enclosure chassis. Shorting battery wires can result in a fire or possible explosion. • Replace batteries with those of an identical type and rating. Never install old or untested batteries. 026-069-B0 Rev G 7 • Only use insulated tools when handling batteries or working inside the enclosure. • Remove all rings, watches and other jewelry before servicing batteries. • Recycle used batteries. Spent or damaged batteries are environmentally unsafe. Refer to local codes for the proper disposal of batteries. • A disconnect switch shall be provided by others for the AC input and AC output circuits. • Risk of Electric Shock and Fire Hazard: replace fuse with the same type and rating. 1.3 External Battery Safety • The power system requires an over-current protection device for the external batteries. The maximum allowable current is typically 450A but can be less depending on the model. Follow the local electrical codes. • Ensure that the external battery connection is equipped with a disconnect. • If the batteries are stored for extended periods before the installation, charge the batteries at least once every three months to ensure optimum performance and maximum battery service life. • Refer to the battery manufacturer’s recommendation to select the correct float and equalize charge voltage settings. Failure to do so can damage the batteries. Verify that the battery charger’s float and equalize settings are correct. • The batteries are temperature sensitive. During extremely cold conditions, a battery’s charge acceptance is reduced and requires a higher charge voltage. During extremely hot conditions, a battery’s charge acceptance is increased and requires a lower charge voltage. To allow for changes in temperature, the battery charger must be equipped with a temperature compensating system. For Hybrid UPS configurations, refer to the rectifier manual for information about temperature compensation. • If the batteries appear to be overcharged or undercharged, first check for defective batteries and then verify that the charger voltage settings are correct. • To ensure optimal performance, inspect the batteries according to the battery manufacturers recommendations. Check for signs of cracking, leaking, or unusual swelling. Some swelling is normal. • Check the battery terminals and connecting wires. Periodically clean the battery terminal connectors and retighten them to the battery manufacturer's torque specifications. Spray the terminals with an approved battery terminal coating such as NCP-2 or No-Ox. • Verify that the polarity of the cables are correct before connecting the batteries to the power module. The polarity is clearly marked on the batteries. The battery breaker will trip and the rectifiers may be damaged if the cables are connected with the wrong polarity. 1.4 Utility Power Connection Connecting to the utility must be performed by qualified service personnel only and must comply with local electrical codes. The utility power connection must be approved by the local utility before the installation. 8 026-069-B0 Rev G 1.5 Equipment Grounding To provide a ready, reliable source of backup power, the power system must be connected to an effective grounding and earthing system. The grounding system must be designed to protect both personnel and equipment. WARNING! Low impedance grounding is mandatory for personnel safety, critical for the proper operation of the system, and must be in place and connected to the system before the supply cables are connected. 1.5.1 Safety Ground The safety ground is a two-part system – the utility service ground and the power system ground. Utility Service Ground As a minimum requirement for the protection of equipment, the local utility service must provide a low-impedance path for fault current return to Earth. This must meet or exceed the requirements of the US National Electrical Code or the Canadian Electrical Code. Power System Ground The power system ground consists of a low-impedance connection between the enclosure and an Earth Ground, which must be located at least six feet away from the utility earth connection. 1.5.2 Lightning Strike Ground Lightning strikes, grid switching, or other power surges on the power line and/or communications cable can cause high-energy transients that can damage the power or communications systems. Without a lowimpedance path to the ground, the current will travel through wires of varying impedance, which can produce damaging high voltages. The best method to protect the system from damage is to divert these unwanted high-energy transients along a low-impedance path to the ground. See section 7.7 for a description of the surge suppression modules installed in the AMPS80 HP. 026-069-B0 Rev G 9 2. Product Description The Alpha Modular Power System 80HP (AMPS80 HP) is a unique, high performance AC and hybrid AC/ DC power system that is ideally suited to provide highly reliable back-up power to cable headend, telecom or server room facilities. The AMPS80 HP features hot swappable 2.5 kVA/2.0 kW inverter modules and optional 1.8 kW rectifier modules that are the building blocks of a highly reliable power system. A smart, unified controller with an integrated Ethernet/SNMP monitors and manages both inverter and rectifier modules through a web based GUI and a local LCD touch screen. The AMPS80 HP is designed to be installed in a climate-controlled environment where ambient temperatures are between -20°C to 40°C. 2.1 Theory of Operation Each AMPS module includes a reliable 48 VDC to 120 VAC inverter as well as an AC-to-DC rectifier. When AC Mains is available, AC power is converted to a high voltage DC bus, which is then converted back to AC. In this high performance (HP) mode, AMPS delivers fully conditioned, line-regulated telecom-grade AC power with 94% system efficiency. AC Mains Telecom Grade AC Output DC In CAN bus external communication DSP Dual redundant communication and synchronization between modules When AC Mains is unavailable, DC battery power is converted to AC with zero transfer time. An intelligent high voltage DC bus decides when to draw power, and how much power to draw, from AC or DC source. During AC input brownout condition, output power is supplemented by battery power. AC to DC input transfer can also be automatically triggered via the system controller to enable advanced operation such as utility peak shaving. In case of a fault, advanced DSP controls allow the AMPS module to isolate itself, while the rest of the system continues to power the load (with reduced output). 10 026-069-B0 Rev G Boost AC Mains 400 Vdc DC In CAN bus external communication DSP Telecom Grade AC Output Dual redundant communication and synchronization between modules AMPS modules also have a ‘Boost’ over-current feature with 10 times the rated current capacity for 20ms, allowing it to trip breakers downstream, thus protecting the load. 2.1.1 AC or DC input priority The user can choose either AC or DC input priority. If AC priority is chosen, the AMPS80 HP acts more like an on-line, double conversion UPS. If AC commercial power is available, this power is filtered twice and passed to the AC output. If the AC commercial power fails, the DC converter simply takes over and supplies the power from the batteries. If DC priority is chosen, the AMPS80 HP acts more like an Inverter with AC bypass function. Normally, power is drawn from the batteries. If DC power fails, the AC-DC converter takes over, still providing regulated and filtered power to the load. 026-069-B0 Rev G 11 2.2 System Components The AMPS80 HP consists of a number of individual subsystems designed to work together to provide highly reliable, filtered power in support of the load. A typical system contains the following: 1. Main Wiring Access Panel: AC input and output as well as Safety Extra-Low Voltage (SELV) DC battery connections are accessed through the front panel and fed through the opening at the top of the rack. 1 2. Rectifier AC Input Breakers (optional): Provide a means to switch off the rectifiers independently of the inverters. 3. Inverter AC Input Breaker: Serves as the main disconnect for the inverter AC input. 2 4. Maintenance Bypass Switch (MBS) (optional): Can be used to route power directly from the AC input to the AC output, bypassing the inverter modules. 3 4 5. Inverter AC Output Breaker: Serves as the main disconnect for the inverter AC outputs. 5 6. CXC Unified System Controller with integrated Ethernet/ SNMP: Monitors and manages both inverter and rectifier modules through a web-based GUI and local LCD touch screen. This is a SELV controller. 6 7 8 7. DC Input Breakers (optional): Provide SELV DC power to each Inverter module. 8. T2S Inverter Control Card: Communicates with the CXC Unified controller. This is a SELV Controller. 9. Inverter Modules and shelves: Up to 9 shelves containing 4 hot-swappable 2500 VA / 2000 W inverter modules on each shelf. 9 10. Rectifier Modules and shelves (optional): Two shelves contain up to four hot-swappable 1800 W rectifier modules on each shelf. The rectifiers are used as the SELV DC battery charging component of a hybrid system. Each rectifier shelf is only connected to one of the DCbattery feeds: the top shelf to DC1, and the bottom rectifier shelf is connected to DC4. In a system with four independent battery feeds, two of these battery banks will not be charged from the AMPS80 HP rectifiers. 10 12 026-069-B0 Rev G 2.3 Rear Components Two breakers are mounted at the rear, upper corners of the cabinet – one is a breaker for DC1 to the CXCR controller and the other for the signal wiring and DC4 to the CXCR controller. (DC4 is provides backup power for the controller if DC1 fails.) Breaker for DC1 to the controller Breaker for signal wiring and DC4 to the controller Front Figure 1 — Controller breakers on top of the AMPS80 026-069-B0 Rev G 13 2.4 Module Location Relative to System Wiring 2.4.1 Split-phase or 120/208V 2-Pole systems Refer to section 3 for an explanation of the "split-phase" and "2-pole" terminology. • 20 kVA, see Table F on page 24 • 40 kVA, see Table E on page 23 Optional DC breaker inputs DC 1 DC 3 DC 2 DC feeds for inverters DC 4 Blank panel Inverters for AC phase 1 (L1) Inverters for AC phase 2 (L2) Blank panels Rectifier output to DC1 Rectifier output to DC4 Figure 2 — 20 kVA split-phase or 120/208V 2-pole system 14 026-069-B0 Rev G DC 1 Optional DC breaker inputs DC 3 DC 2 DC 4 DC feeds for inverters Inverters for AC phase 1 (L1) Inverters for AC phase 2 (L2) Blank panels Rectifier output to DC1 Rectifier output to DC4 Figure 3 — 40 kVA, split-phase or 120/208V 2-pole system 026-069-B0 Rev G 15 2.4.2 3-phase systems Optional DC breaker inputs DC 1 DC 3 DC 2 DC feeds for inverters DC 4 Inverters for AC phase 1 (L1) Inverters for AC phase 2 (L2) Inverters for AC phase 3 (L3) Rectifier output to DC1 Rectifier output to DC4 Figure 4 — 75 kVA, 3-phase systems 16 026-069-B0 Rev G Optional DC breaker inputs DC 1 DC 3 DC 2 DC feeds for inverters DC 4 Blank panel Inverters for AC phase 1 (L1) Inverters for AC phase 2 (L2) Inverters for AC phase 3 (L3) Blank panels Rectifier output to DC1 Rectifier output to DC4 Figure 5 — 30 kVA, 3-phase system 026-069-B0 Rev G 17 3. AC and DC Power Configurations This section lists the power configurations available with the AMPS80 system and defines the terminology used throughout this manual. 3.1 Power System Configuration Terminology 3.1.1 120Vac Single Phase A single phase system is 120Vac from L1 to N (neutral). L1 3.1.4 120/240Vac Split Phase 120V The term 120/240Vac SPLIT PHASE is used throughout this manual to identify the “3-wire/ 2 legs from a single phase supply” configuration shown in Figure 6. 240V 120V N Figure 6 — Split Phase from a Single phase supply L2 3.1.2 120/208Vac 2-Pole L1 The term 120/208 2-POLE is used throughout this manual to identify the “2-pole from a 3-phase supply” configuration such as L2 to L3 shown in Figure 7. 208V L2 12 0V 0V 12 3.1.3 3-Phase 208V 208V 120V Each phase conductor carries the same current, 120 degrees out of phase with each other as shown in Figure 7. N L3 Figure 7 — 2-Pole from a 3-phase supply 3.1.5 120/208Vac 3-Phase Each phase conductor is 120 degrees out of phase with the other, as shown in Figure 7. All three phases (3pole) plus the neutral are in use. 18 026-069-B0 Rev G 3.2 3-Phase Systems – Recommended AC and DC Breakers NOTE: The recommendations in Table A are for reference only. A registered professional engineer must review and approve or modify these recommendations in compliance with applicable national and local electrical and building codes. With MBS AMPS80-3-67, Without rectifiers With MBS With rectifiers AMPS80-3-75-H2, MBS With MBS Without rectifiers AMPS80-3-75, MBS Without MBS With rectifiers 120/208 V 120/208 V 120/208 V 120/208 V Full load AC input current per phase 177 A 227 A 223 A 273 A 200 A AC input poles & wiring 4w+G 4w+G 4w+G 4w+G 4w+G Wiring 3Ф Wye 3Ф Wye 3Ф Wye 3Ф Wye 3Ф Wye 225 A 300 A 300 A 350 A 250 A 2x 1/0 2x 3/0 2x 3/0 2x 4/0 2x 2/0 Recommended AC input breaker/fuse2 Total maximum AC output output AMPS80-3-75-H2 120/208 V Recommended AC input wire size 90ºC copper1 AC Without MBS AC input voltage AC input Without rectifiers Model AMPS80-3-75 Table A — 75 kVA, 3-phase systems (AMPS80-3-75 series), single AC feed 75 kVA, 60 kW 75 kVA, 60 kW 75 kVA, 60 kW 75 kVA, 60 kW 67 kVA, 60 kW AC output voltage 120/208 V 120/208 V 120/208 V 120/208 V 120/208 V AC output poles & wiring 4w+G 4w+G 4w+G 4w+G 4w+G Wiring 3Ф Wye 3Ф Wye 3Ф Wye 3Ф Wye 3Ф Wye AC output current per phase 208 A 208 A 208 A 208 A 186 A Installed inverter input & output circuit breaker 250 A 250 A 250 A 250 A 225 A Recommended AC output wire size 90ºC copper1 2x 2/0 2x 2/0 2x 3/0 2x 4/0 2x 2/0 AC input & output Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping screw to connection 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG wire. terminals Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5 current Note 1 carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input wire size. Note 2 Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring solely to the inverters does not require double neutral wiring. 026-069-B0 Rev G 19 NOTE: The recommendations in Table B are for reference only. A registered professional engineer must review and approve or modify these recommendations in compliance with applicable national and local electrical and building codes. Table B — 75 kVA, 3-phase systems (AMPS80-3-75 series), dual AC feeds Model Dual feed with separate AC feed for inverters/MBS and rectifiers AC input AC output AMPS80-3-75-H2 AMPS80-3-75-H2, MBS AC feed Inverter feed Rectifier feed Inverter/MBS feed Rectifier feed AC input voltage 120/208 V 208 V 120/208 V 208 V Full load AC input current per phase 177 A 50 A 223 A 50 A AC input poles & wiring 4w+G 4w+G 4w+G 4w+G Wiring 3Ф Wye 3Ф Wye 3Ф Wye 3Ф Wye Recommended AC input breaker/fuse2 225 A 70 A 300 A 70 A Recommended AC input wire size 90ºC copper1 2x 1/0 or 300 kcmil #4 AWG 2x 3/0 #4 AWG Total maximum AC output 75 kVA, 60 kW 75 kVA, 60 kW AC output voltage 120/208 V 120/208 V AC output poles & wiring 4w+G 4w+G Wiring 3Ф Wye 3Ф Wye AC output current per phase 208 A 208 A Installed inverter input & output circuit breaker 250 A 250 A Recommended AC output wire size 90ºC copper1 2x 2/0 2x 3/0 Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping AC input & output screw to 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG connection terminals wire. Rectifier connection Box lugs are rated for either Aluminum or Copper wire, 2/0 to #6 AWG. Fasten clamping screw to 14 terminals N-m (120 in-lbs) 20 Note 1 Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5 current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input wire size. Note 2 Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring solely to the inverters does not require double neutral wiring. 026-069-B0 Rev G NOTE: The recommendations in Table C are for reference only. A registered professional engineer must review and approve or modify these recommendations in compliance with applicable national and local electrical and building codes. Single Single Single Single AC input voltage 120/208 V 120/208 V 120/208 V 120/208 V Full load AC input current per phase 71 A 121 A 88 A 138 A AC input poles & wiring 4w+G 4w+G 4w+G 4w+G Wiring 3Ф Wye 3Ф Wye 3Ф Wye 3Ф Wye 90 A 150 A 125 A 175 A Recommended AC input wire size 90ºC copper1 #2 3/0 2/0 4/0 Total maximum AC output 30 kVA, 24 kW 30 kVA, 24 kW 30 kVA, 24 kW 30 kVA, 24 kW AC output voltage 120/208 V 120/208 V 120/208 V 120/208 V AC output poles & wiring 4w+G 4w+G 4w+G 4w+G Wiring 3Ф Wye 3Ф Wye 3Ф Wye 3Ф Wye AC output current per phase 83 A 83 A 83 A 83 A Installed inverter input & output circuit breaker 125 A 125 A 125 A 125 A Recommended AC output wire size 90ºC copper1 2/0 2/0 2/0 4/0 AC input Recommended AC input breaker/fuse2 AC output MBS AMPS80-3-30-H2 Feed Model AMPS80-3-30, AMPS80-3-30 AMPS80-3-30-H2, MBS Table C — 30 kVA, 3-phase systems (AMPS80-3-30...), single AC feed Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping AC input & output screw to 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG connection terminals wire. Note 1 Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5 current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input wire size. Note 2 Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring solely to the inverters does not require double neutral wiring. 026-069-B0 Rev G 21 3.3 120V/240V Split Phase or 120/208V 2-Pole Systems NOTE: The recommendations in Table D are for reference only. A registered professional engineer must review and approve or modify these recommendations in compliance with applicable national and local electrical and building codes. Table D — 40 kVA, split-phase, 2-pole systems (AMPS80-2-40 series), single AC feed Model AC input AC output AMPS80-2-40 AMPS80-240-H2 AMPS80-2-40, MBS AMPS80-240-H2, MBS Feed Single Single Single Single AC input voltage 120/208 V or 120/240 V 120/208 V or 120/240 V 120/208 V or 120/240 V 120/208 V or 120/240 V Full load AC input current per phase 148 A 225 A 179 A 256 A AC input poles & wiring 3w+G 3w+G 3w+G 3w+G Wiring 2-pole 2-pole 2-pole 2-pole Recommended AC input breaker/fuse2 200 A 300 A 225 A 350 A Recommended AC input wire size 90ºC copper1 250 kcmil 2x 3/0 2x 1/0 or 300 kcmil 2x 4/0 Total maximum AC output 40 kVA, 32 kW 40 kVA, 32 kW 40 kVA, 32 kW 40 kVA, 32 kW AC output voltage 120/208 V or 120/240 V 120/208 V or 120/240 V 120/208 V or 120/240 V 120/208 V or 120/240 V AC output poles & wiring 3w+G 3w+G 3w+G 3w+G Wiring 2-pole 2-pole 2-pole 2-pole AC output current per phase 167 A 167 A 167 A 167 A Installed inverter input & output circuit breaker 250 A 250 A 250 A 250 A Recommended AC output wire size 90ºC copper1 2x 2/0 2x 2/0 2x 2/0 2x 4/0 AC input & output Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping screw connection terminals to 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG wire. 22 Note 1 Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5 current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input wire size. Note 2 Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems with significant nonlinear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring solely to the inverters does not require double neutral wiring. 026-069-B0 Rev G NOTE: The recommendations in Table E are for reference only. A registered professional engineer must review and approve or modify these recommendations in compliance with applicable national and local electrical and building codes. Table E — 40 kVA, split-phase, 2-pole systems (AMPS80-2-40 series), dual AC feeds Model Dual feed with separate AC feed for inverters/MBS and rectifiers AMPS80-2-40-H2 AMPS80-2-40-H2, MBS AC feed Inverter feed Rectifier feed Inverter/MBS feed Rectifier feed AC input voltage 120/208 V or 120/240 V 208 V or 240 V 120/208 V or 120/240 V 208 V or 240 V Full load AC input current per phase 148 A 77 A 179 A 77 A AC input poles & wiring 3w+G 3w+G 3w+G 3w+G Wiring 2-pole 2-pole 2-pole 2-pole Recommended AC input breaker/fuse2 200 A 100 A 225 A 100 A Recommended AC input wire size 90ºC copper1 250 kcmil #1 2x 1/0 or 300 kcmil #1 AC input AC output Total maximum AC output 40 kVA, 32 kW 40 kVA, 32 kW AC output voltage 120/208 V or 120/240 V 20/208 V or 120/240 V AC output poles & wiring 3w+G 3w+G Wiring 2-pole 2-pole AC output current per phase 167 A 167 A Installed inverter input & output circuit breaker 250 A 250 A Recommended AC output wire size 90ºC copper1 2x 2/0 2x 1/0 Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping AC input & output screw to 375 in-lbs (42 N-m) for #1 AWG to 350 kcmil wire or 200 in-lbs (23 N-m) for #6 to #2 AWG connection terminals wire. Rectifier connection Box lugs are rated for either Aluminum or Copper wire, 2/0 to #6 AWG. Fasten clamping screw to 14 terminals N-m (120 in-lbs) Note 1 Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5 current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input wire size. Note 2 Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring solely to the inverters does not require double neutral wiring. 026-069-B0 Rev G 23 NOTE: The recommendations in Table F are for reference only. A registered professional engineer must review and approve or modify these recommendations in compliance with applicable national and local electrical and building codes. Table F — 20 kVA, split-phase, 2-pole systems (AMPS80-2-20 series), single AC feed Model AC input AC output AMPS80-2-20 AMPS80-220-H2 AMPS80-220, MBS AMPS80-220-H2, MBS Feed Single Single Single Single AC input voltage 120/208 V or 120/240 V 120/208 V or 120/240 V 120/208 V or 120/240 V 120/208 V or 120/240 V Full load AC input current per phase 71 A 148 A 89 A 166 A AC input poles & wiring 3w+G 3w+G 3w+G 3w+G Wiring 2-pole 2-pole 2-pole 2-pole Recommended AC input breaker/fuse2 90 A 200 A 125 A 225 A Recommended AC input wire size 90ºC copper1 #2 250 kcmil 2/0 2x 1/0 or 300 kcmil Total maximum AC output 20 kVA, 16 kW 20 kVA, 16 kW 20 kVA, 16 kW 20 kVA, 16 kW AC output voltage 120/208 V or 120/240 V 120/208 V or 120/240 V 120/208 V or 120/240 V 120/208 V or 120/240 V AC output poles & wiring 3w+G 3w+G 3w+G 3w+G Wiring 2-pole 2-pole 2-pole 2-pole AC output current per phase 83 A 83 A 83 A 83 A Installed inverter input & output circuit breaker 125 A 125 A 125 A 125 A Recommended AC output wire size 90ºC copper1 2/0 2/0 2/0 2x 1/0 or 300 kcmil Box lugs are rated for either Aluminum or Copper wire, 2x 350 kcmil to #6 AWG. Fasten clamping AC input & output screw to 42 N-m (375 in-lbs) for #1 AWG to 350 kcmil wire or 23 N-m (200 in-lbs) for #6 to #2 AWG connection terminals wire. 24 Note 1 Inverter AC Input & AC Output connections: Calculations based on full load and charging current, 0.8 derating with 5 current carrying conductors, (L1,L2,L3,2XN) due to possible high harmonic content load. Temperature correction factor applied when needed. If an internal MBS is present, the AC output wire size must be equal to or greater than the AC input wire size. Note 2 Maximum AC utility service protection feeding the AMPS80 HP is 400 A. The actual supply circuit breaker must be sized appropriately for the supply wire used. Consult your local and national electrical codes. The AC source must be limited to 18 kA short circuit current. Double neutral is strongly recommended for AC output wiring (and AC input wiring to the MBS) for 3Ф systems with significant non-linear (ie rectified capacitive) loads. Because the AC input to the inverters is power factor corrected, AC wiring solely to the inverters does not require double neutral wiring. 026-069-B0 Rev G 3.4 DC Fuse/Breaker Alpha recommends using fuses instead of breakers because they provide better fault protection. NOTE: The recommendations in Table G are for reference only. A registered professional engineer must review and approve or modify these recommendations in compliance with applicable national and local electrical and building codes. AMPS80-3-30 AMPS80-3-30-H2 AMPS80-2-40 AMPS80-2-40-H2 AMPS80-2-20 AMPS80-2-20-H2 Maximum DC Input wattage Maximum DC Input Current @ 48 Vdc, full load DC input current @ 40 V DC 110% load input Maximum DC input breaker Single DC feed Recommended minimum DC fuse/ Dual DC breaker rating feed (100% rated, per feed) Quad DC feed 026-069-B0 Rev G 67 kW 27 kW 36 kW 18 kW 1396 A 563 A 750 A 375 A 1843 A 743 A 990 A 495 A AMPS80-3-75 Model AMPS80-3-75-H2 Table G — Recommended DC fuse/breaker 2500 A, maximum 50 kA SCC 2000 A 800 A 1000 A 500 A 1200 A 400 A 500 A 250 A 600 A 200 A 250 A 125 A 25 3.5 AMPS80 DC Feed Options One Two Four AMPS80-2-40 Max Load Power AMPS80-2-40 Redundancy Power AMPS80-3-30 Max Load Power AMPS80-3-30 Redundancy Power 1. Single feed – no DCB AMPS80-3-75 Redundancy Power Feed Option N+0, 75kVA 60kW 40kVA 32kW 30kVA 24kW N+1, 67.5kVA 54kW 35kVA 28kW 22.5kVA 18kW N+2 60kVA 48kW 30kVA 24kW 15kVA 12kW Possible Output Redundancy # of Independent DC Sources AMPS80-3-75 Max Load Power Table H — DC Feed Option – Max Load Power and Redundancy Power N+3 52.5kVA 42kW 25kVA 20kW 7.5kVA 6 kW 2. Single Feed with DC Breaker option N+N 37.5kVA 30kW 20kVA 16kW 15kVA 12kW 3. Dual Feed N+N 37.5kVA 30kW 20kV 16kW 15kVA 12kW 4. Quad Feed N+2 60kVA 48kW 30kVA 24kW 15kVA 12kW N+3 52.5kVA 42kW 25kVA 20kW 7.5kVA 6 kW 5. Dual Feed N+N 37.5kVA 30kW 20kV 16kW 15kVA 12kW 6. Quad Feed N+2 60kVA 48kW 30kVA 24kW 15kVA 12kW N+3 52.5kVA 42kW 25kVA 20kW 7.5kVA 6 kW N+N 37.5kVA 30kW 20kVA 16kW 15kVA 12kW 22.5kVA 18kW 7. Quad Feed N+1, N+2 N+3 26 30kVA 52.5kVA 24kW 42kW 026-069-B0 Rev G 3.6 How to Configure Inverters in AC Input Groups, AC Output Groups and DC Input Groups The following sections show how to distribute the inverters among the phases and also suggests how to distribute the DC input to the inverters. 3.6.1 AC Input Groups/ AC Output Groups The CXC controller provides an interface to assign inverters to phases (Inverters > Group Mapping). The logical approach is to match the configuration of inverters in the AC Input Group to the configuration of inverters in the AC Output Group as shown. See Figure 9 also for three Input Groups. Turn off the inverters to configure AC Output Groups by clicking the green power icon. These groups of inverters can then be monitored as a unit in the View Group Status screen. Figure 8 — Monitotring AC Input Groups, AC Output Groups and DC Input Groups 026-069-B0 Rev G 27 3.6.2 DC Input Groups The configuration of the DC input to the inverters provides several different ways to monitor DC input power and input current. The number of DC Input Groups (maximum eight) is set in the Inverters > Group Mapping screen and monitored as a unit in the View Group Status screen. The following table gives examples of possible configurations. Monitoring DC Source Bulk Assign all inverters to DC Input Group 1. Dual Input For example: Assign all the inverters in column 1 & 2 to DC Input Group 1. Assign all the inverters in shelves 3 & 4 to DC Input Group 2. Quad Input For example: Assign all the inverters in column 1 to DC Input Group 1. Assign all the inverters in shelves 2 to DC Input Group 2. Assign all the inverters in column 3 to DC Input Group 3. Assign all the inverters in shelves 4 to DC Input Group 4. Figure 9 — Inverter mapping for AC and DC Groups 28 026-069-B0 Rev G 4. System Pre-Installation 4.1 Site Selection The AMPS80 HP is designed to be installed in a controlled environment, sheltered from rain, excessive dust and other contaminants. Consider both the floor loading and the physical space required for the AMPS80 HP power system and the batteries. 4.1.1 Floor Plan Layout Sufficient free space must be provided at the front and rear of the power system to meet the cooling requirements of the inverters and rectifiers(if installed) in the power system and to allow easy access to the power system components. Consider the following before selecting a location for the AMPS80 HP power system • Structure of building able to support the additional weight • Enough space to meet requirements for access • Enough space to meet cooling requirements of the rectifiers • Adequate space to do the install • Route that equipment will take through the building to reach the site • Check and record distances to load • Check and record distances to AC power source • Check and record distances to batteries/DC power source • Understand the full load on the DC system • Window for working hours and other similar restrictions • How much and what kind of prep work can be done in advance xx Reinforce floors xx Install distribution panels xx Install cable racks xx Run wiring xx Minimize cable lengths (cost) xx Minimize cable flow and congestion 026-069-B0 Rev G 29 4.2 Recommended Installation Layout NOTE: In the unlikely event that internal components need repair, 1 m access around the unit is recommended. Minimum required clearances around the cabinet: • Rear: 12" (30 cm) minimum, 18" (46 cm) recommended • Sides: no clearance required. However for 75 kVA hybrid systems and systems with TVSS option, 36" (100 cm) clearance to the left side of the cabinet is strongly recommended for ease of service • Top: 12" (30 cm) • Front: 36" (100 cm) OTHER EQUIPMENT OR WALL 12in [30 cm] minimum, 18in 46cm] recommended for adequate ventilation Rear OTHER EQUIPMENT OR WALL [1 m] 3 Feet OTHER EQUIPMENT OR WALL The 1m recommended clearance only applies to 75kVA hybrid systems with TVSS option (for ease of service). Front 6.0in [15cm] Minimum distance for ventilation Minimum distance for service [1 m] 3 Feet Figure 10 — Installation layout and clearances 30 026-069-B0 Rev G 4.3 Option for DC input into AMPS80 Kit #7400448-001 contains eight copper brackets 5901374-001, which once installed provide lug connections on both sides of the copper bracket. See Figure 11. Figure 11 — Top front view showing installing of brackets in kit #7400448-001 026-069-B0 Rev G 31 4.4 Wiring for Generator and/or External MBS Refer to Figure 12 for schematic of a system with a generator and/or external MBS. Figure 12 — System Schematic with Generator and MBS 32 026-069-B0 Rev G 4.5 Transporting the Cabinet The cabinet is shipped upright on a 122 cm x 122 cm (48" x 48") pallet and can be transported to the installation site either by forklift or overhead crane. The empty cabinet weighs approximately 270 kg (595 lb). The height of the rack, including pallet and shipping material is 234 cm (92"). When tilting the rack to fit through doors, tilt the rack toward the back and ensure that it is not subjected to sudden shock. Use the supplied lifting eyes to lift the cabinet from the top. The lifting eyes are accessible by removing the top sheet of wood from the shipping crate. Figure 13 — Arrangement of lifting eyes on top of cabinet 026-069-B0 Rev G 33 4.6 Unpacking Instructions WARNING! The AMPS80 HP rack weighs 270 kg / 595 lb. Care must be taken to ensure that it does not topple over. 1. Remove 6 screws from top panel to access AMPS80 HP lifting eyes. Use Phillips head tool to remove 2. Remove 4 screws from each top 2 x 4 and 6 screws from each wooden side piece to gain access to removal of the front and rear wooden frames. Lifting eyes Use Phillips head tool to remove 3. Remove 3 screws from the front and rear wooden frames. 4. Remove AMPS80 HP metal side panels to gain access to 4 interior lag bolts. Remove 4 lag bolts to allow removal of the AMPS80 HP from the pallet. Use Phillips head tool to remove A Use 9/16" wrench or socket to remove 34 026-069-B0 Rev G 4.7 Anchoring the Cabinet The cabinet must be fixed in place by means of anchor bolts. In areas prone to seismic events, use anchors rated for the appropriate Seismic zone. 185.0mm [7.28in] 647.2mm [25.48 in] 277.2mm [10.91in] 12.7mm x4 [0.50in] 185.0mm [7.28in] 25.4mm [1.00in] [21.51in] 546.4mm 597.2mm [23.51in] 25.4mm [1.00in] Figure 14 — Mounting hole pattern 026-069-B0 Rev G 35 4.7.1 Optional Conversion from Single to Dual AC Feed The AMPS80 HP system is preconfigured from the factory for a single AC feed per phase for inverters and rectifiers if present. You have the option to convert to dual feed—see (Figure 15 and Figure 16 AMPS80 HP AC Output AC Input Inverters Rectifier (optional) Make before break manual bypass switch (optional) DC breakers (optional) Battery Connection Figure 15 — Single AC feed AMPS80 HP Inverter AC Input AC Output Inverters Make before break manual bypass switch (optional) Rectifier AC Input Rectifier (optional) Battery Connection Figure 16 — Dual AC Feed 36 026-069-B0 Rev G Procedure to remove the internal rectifier powering wiring: Have the following tools on hand: • Phillips screw driver • 3/8” wrench or socket • 3/16” hex key WARNING! Before removing the wiring access panel, make sure all power to the unit is switched off, tagged and locked. STEP 1: Remove the wiring access panel. STEP 2: Locate the rectifier terminal block Figure 17 — Rectifier terminal block 026-069-B0 Rev G 37 STEP 3: Remove the internal rectifier powering wires before installing the separate rectifier feed Disconnect with a 3/16" hex key Disconnect the 10-32 nut with a 3/8" wrench or socket Once the internal rectifier powering wires have been removed, install the external rectifier powering wires into the rectifier terminal block—see Figure 17. 38 026-069-B0 Rev G 4.7.2 AMPS80 HP with External Maintenance Bypass Switch These diagrams show the logical internal connections. They are not a detailed representation of the actual internal system wiring. AMPS80 HP Installation Diagram for single AC input feed for the Inverter/MBS and Rectifiers MAIN Generator Distribution Panel External Maintenance Bypass Switch AMPS80 HP AC Output AC Input Inverters Automatic Transfer Switch Break Before Make Dedicated UPS Distribution Panel Make before break manual bypass switch (optional) DC breakers (optional) Rectifier (optional) Critical Systems Power UPS BYPASS Battery Connection Utility Figure 18 — Representative system wiring for AMPS inverter or hybrid system with MBS with single AC input feed. AMPS80 HP Installation Diagram for separate AC input feeds for the Inverter/MBS and Rectifiers MAIN Distribution Panel Generator External Maintenance Bypass Switch AMPS80 HP Inverter AC Input AC Output Inverters Automatic Transfer Switch Dedicated UPS Distribution Panel Rectifier AC Input Rectifier (optional) DC breakers (optional) Critical Systems Power UPS Make before break manual bypass switch (optional) BYPASS Battery Connection 400A for AMPS80-3-75 AMPS80-2-40 Utility 200A for AMPS80-3-30 AMPS80-2-20 Figure 19 — Representative system wiring for AMPS inverter system with independent AC input feed for MBS 026-069-B0 Rev G 39 5. System Installation The AMPS80 HP system is pre-configured from the factory for a single AC feed per phase for inverters, a maintenance bypass switch, and rectifiers if present. The installer is responsible for connecting the following: • Utility input to the system (120 V line to neutral) • Battery strings • System to the load • Chassis and battery return to the reference ground Reference Notes: • If the AC input neutral is connected, remove the neutral to ground bonding wire. The neutral to ground wire is provided for systems without AC Input connections in which case the inverter output is considered a separately derived source and the AC output neutral must be connected to earth ground. • In a 3-phase system equipped with an internal maintenance bypass switch and a load with a significant distortion power factor, it is strongly recommended to provide the AC input and AC output connection with a double neutral feed. Non-power factor corrected IT power supplies with rectified-capacitive loads can contain high levels of 3rd harmonics that are created in such 3-phase systems. The current in the neutral line can easily be twice the current in the line currents. • DC tie bars are supplied to allow dual A/B battery feed (DC1 tied to DC2 and DC3 tied to DC4) or single battery feed (DC1 - 4 are tied) • If the system is equipped with the optional rectifiers, each rectifier shelf in a hybrid system is only connected to one of the DC- battery feeds: the top shelf to DC1, and the bottom rectifier shelf is connected to DC4. In a system with four independent battery feeds, two of these battery banks will not be charged from the AMPS80 HP rectifiers. When using two independent A/B feeds, DC1 should be tied to DC2 and DC3 tied to DC4 at the AMPS80 HP DC connection points. Tie bars are provided. * Connections and components relating to L3 are only present for 120/208 V, 3-phase systems. ** Connections and components relating to L2 are only present for 120/240 V split phase and 120/208 V 3-phase systems. 40 026-069-B0 Rev G Carefully review the following schematic and installation notes before proceeding with the installation. 5 6 8 Figure 20 — Battery and power connections Installation notes: 1. All wiring must be in accordance with applicable electrical codes. 2. All external wiring by others. 3. Inverter main input must always include a neutral connection. 4. Power and control cables must be in separate conduits. 5. N-G shorting jumper is factory-installed for inverter-only systems. Remove if AC input ground is connected (#5 on Figure 20). 6. Where rectifier is fed separately from AC (#6 on Figure 20), remove these wires during installation—see section 4.7.1. 7. L3 is only used with 3-phase systems. 8. Four independent battery strings can be connected. Shorting jumpers are provided for single or dual DC feed ((#8 on Figure 20). WARNING! To maintain the security of all SELV Circuits in the AMPS80, connect to other equipment of the same circuit type: signaling/alarm circuits, emergency power off (EPO) circuits, relay contacts, Ethernet or CANBUS. 026-069-B0 Rev G 41 5.1 Input/Output Cabling Overview Connection points are accessed from the top of the unit. A protective panel partitions the AC and DC connections. DC1 DC2 DC3 DC4 DC connections Protective panel between AC & DC connections Ground bus AC output ground AC connections AC input ground Frame ground Figure 21 — Top view of AMPS80 showing AC and DC connection partitions 5.1.1 Wiring Gauge The required gauge of the AC input, DC+/DC- input and AC output cabling is determined by the current rating, circuit breaker rating, typical ambient temperatures and the applicable local electrical codes. Typically the AC input and standard AC output is 6 wires (L1, L2, and L3, N, N, G) up to 350 kcmil THHW or RW90 type cable that connects to the AMPS80 HP system with trade size up to 2.5" conduit. 5.1.2 Grounding Refer to Figure 21 for connection points for frame ground, AC input ground and AC output ground. 42 026-069-B0 Rev G 5.2 AC Connections • Access to connection points is provided from the front of the system rack. • AC wires enter the cabinet through the top. • AC input and AC output wires are connected to box lugs rated for 350 kcmil to #6 AWG. AC input lugs L1 left L2 middle L3 right AC input ground Industrial grade surge suppression modules. AC output lugs L1 left L2 middle L3 right AC neutral connection points Rectifier terminal block (see Figure 17 for details Earth ground bus Optional rectifier AC input breakers AC output ground Figure 22 — AC Connections 5.1.3 Grounding N-G shorting jumper is factory-installed for inverter-only systems. Remove if AC input ground is connected (#5 on Figure 20). 026-069-B0 Rev G 43 5.3 DC Connections • Access to connection points is provided from the front of the system rack. • DC wires enter the cabinet either through the top or the bottom of the cabinet. • A low voltage disconnect should be provided with the battery system. DC+ bus: DC1, DC2, DC3, DC4 input connectors shown with one 4DC tie bar DC- bus: DC1, DC2, DC3, DC4 Figure 23 — DC connections - top view 5.3.1 DC Battery Cabling DC battery cable terminations are designed for two-hole spade lugs crimped to the cabling, then attached to the bus bars. Input cabling 3/8" or 1/2" hardware Depending upon the gauge of the input wiring used, the connections may be made either singly or with two back-to-back lugs per mounting hole. Each bar (DC+, DC-) can accept seven 2-hole ½" mounting lugs on 1-3/4" centers or seven 2-hole 3/8" lugs on 1" centers. Torque specifications for DC wiring (3/8" bolts that attach the DC lugs at the back of the DC distribution box) are 190 – 240 inch/lbs (21.5 – 27.1 N-m). Tie bar Bus bar Figure 24 — Cabling and hardware arrangement 44 026-069-B0 Rev G 5.3.2 DC Connection Configurations CAUTION! A tie bar is only recommended for single feed installations. The use of a tie bar in a two feed installation can cause current loops. If the system is equipped with optional rectifiers, each rectifier shelf in a hybrid system is only connected to one of the DC- battery feeds: • Top rectifier shelf to DC1 • Bottom rectifier shelf to DC4 In a system with four independent battery feeds, two of these battery banks will not be charged from the AMPS80 HP rectifiers. When using two independent A/B feeds, DC1 should be tied to DC2 and DC3 tied to DC4 at the AMPS80 HP DC connection points. Tie bars are provided. Outside of right side of AMPS system Outside of left side of AMPS system 8.3in [211mm] 3.0in [76mm] 3.6in [92mm] 3.0in [76mm] 5.4in [137mm] Top of AMPS system 5.5 [141] 8.9in [227mm] 3.0in [76mm] DC+ ROW 3.0in [76mm] DC- ROW 7.4in [187mm] 3.0in [76mm] 3.6in [92mm] 3.0in [76mm] 6.3in [161mm] Figure 25 — DC connection dimensions – front view 026-069-B0 Rev G 45 Single battery string Two 4DC joining plates are supplied with the dimensions shown in Figure 26. DC+ Row DC– Row .6in [16mm] 14 x 1/2in bolt clearance hole 7 x 3/8in bolt clearance hole .9in [24mm] 1.75in [44mm] .6in [16mm] .9in [24mm] .9in [24mm] 1.5in [38mm] 1.5in [38mm] 1.5in [38mm] 1.5in [38mm] 1.8in [46mm] 1.8in [46mm] Figure 26 — DC tie bar for single battery string 46 026-069-B0 Rev G Two battery strings Four 2DC joining plates are supplied with the dimensions shown in Figure 27. DC+ Row DC– Row .6in [16mm] 6 X1/2" bolt clearance hole .9in [24mm] 3 X3/8" bolt clearance hole 3.0in [76mm] 1.75in [44mm] .9in [24mm] .6in [16mm] 1.5in [38mm] 1.5in [38mm] .9in [24mm] Figure 27 — DC tie bar for two battery strings 026-069-B0 Rev G 47 5.4 Commissioning the System for the First Time 5.4.1 Tools Required The following tools are required to commission the AMPS80 HP system for the first time: • Medium flat screwdriver with approximately 3/8" (5 mm) blade width • True RMS digital multimeter • Computer with Ethernet port and Internet Explorer 7 or later • Crossover Ethernet cable if a computer is directly connected to the CXC controller • Straight through Ethernet cable if the network connections are made through a router or hub • Torque wrench • 3/8" hex driver CXCR Ethernet port 5.4.2 Before you begin: WARNING! The AMPS80 HP must have no power (utility breaker OFF and locked out) and no modules installed prior to start-up. 1. Verify that the AMPS80 HP system is mechanically secured to the floor or other structure. 2. Verify that the contoller breakers on top of the unit are set to ON. See Figure 1 3. Verify that the clearances around the AMPS80 HP system meet the minimum requirements (see Figure 10). 4. Ohm-test the AC and DC bus bars to check for any shorts caused by cut wires, loose bolts, washers and other conductive material. If possible do Megger testing. 5. Verify that the AMPS80 HP system is correctly and securely grounded to the building grounding system. 6. Verify that the AMPS80 HP system is correctly and securely connected to the utility and batteries: a. For the battery connections, follow the manufacturer's recommendations and record the torques. b. For the AC connections, torque #1 AWG - 350 kcmil wire to 375 in-lbs (42 N-m), and #6 - #2 AWG wire to 200 in-lbs (23 N-m). c. If rectifier wiring is installed, torque the connections to 120 in-lbs (14 N-m). 7. If this system includes rectifiers for charging, verify that all rectifier modules are removed from the rectifier shelves. 48 026-069-B0 Rev G 8. Verify that all breakers at the external load distribution box are switched OFF. 9. Refer to and verify that the following breakers are OFF • Rectifier AC input circuit breakers (if option installed) • inverter AC input circuit breaker • Inverter AC output circuit breaker • DC input breakers (if option installed) 10. If equipped with a maintenance bypass switch (MBS), place this switch in the INVERTER mode. 11. If a Generator is installed, verify that the transfer switch has a minimum 1 second switching delay or that the transfer is always in phase (+/- 30 deg). Starting-up the system 12. Switch on the AC mains/utility power. 13. Verify the AMPS80 HP system AC input voltages at the AC wiring terminals (Figure 22): System ALL 3 phase Voltage Value Neutral to Earth Ground L1 to L2, L2 to L3, L3 to L1 ~0V ~208V Neutral to L1 / L2 / L3 2-pole L1 to L2 120V ~208V Neutral to L1 / L2 Split Phase L1 to L2 120V ~240V Neutral to L1 / L2 120V 14. Check that the battery polarity is correct and then switch on the external battery breakers or complete the fuse circuit. 15. Turn on the AMPS80 DC Input Breakers (if installed). 16. Verify that the system starts up and that the controller switches on: the controller display initializes with three LEDs blinking while a self-test runs for 15 seconds. Ignore any alarm conditions indicated by the amber and red LEDs. 252W 2% AC Output Power % ratio of the Output Power VA or Watts whichever is higher Figure 28 — Controller default home screen 026-069-B0 Rev G 49 Connecting a laptop 17. Connect a computer to the CXCR controller with a crossover cable. Installing One Seed Module per Phase You are now going to configure the system with just one inverter per phase. 18. Install only one inverter "seed module" per phase according to the instructions in Figure 31 and Figure 32. Position each inverter in the same shelf position per phase. Install ONLY ONE INVERTER PER PHASE in the right most position of the top shelf for each phase. Inverters for AC phase 1 (L1) Inverters for AC phase 2 (L2) Blank panels Figure 29 — Seed modules shown for 40 kVA, split-phase systems 19. Switch on the inverter AC input breaker on the AMPS80 HP front panel. Verify that the AC input LEDs turn on for each module. The LEDs may flash in different colors but this behavior is not a cause for concern. 20. Use the CXC GUI as follows to verify that the modules are recognized and the voltages and currents of the modules are displayed. (Ignore any alarms at this point. The current readings at no load are not very AC input LED Figure 30 — Inverter module showing AC input LED 50 026-069-B0 Rev G WARNING! Do not install all inverter modules at once but load one inverter module into an open slot for each AC phase. This allow the initial set-up of the AC phases. All remaining modules will automatically take on the configurations of these “seed” modules. See diagrams under Section 8.1: Module Location Relative to System Wiring for AC phase locations. See below for detailed module insertion/removal instructions. You may not want to close/lock the grill at this time because the module may have to be removed at a later stage. CAUTION! Improper installation or removal of modules can break latching components. Unlock Lock Insert a flat head screw driver into the center flap notch and pry open the center flap. Then pull out the module by pulling on the center flap with both hands. Leave the module plastic front grill in the open/unlocked position, then slide/push the module all the way into the module slot, and then close the flap. Figure 31 — Unlocking and locking an inverter module for removal or insertion 1. Place module into shelf. 2. Press module into place and ensure connection is engaged. 3. Close cover and snap module into place. If cover does not close easily, repeat Step 2. Figure 32 — Inserting and removing an inverter module 026-069-B0 Rev G 51 precise.) a. Select Inverters > View Live Status> Inverter Report. b. In the Inverter Report screen, locate the module for AC phase 1: click each row until the LEDs of the inverter in the first phase 1 shelf flash for a few seconds. c. Using the pull down box in the Module Number column, set the module number to 1 to correspond to AC phase 1. d. Locate the module for AC phase 2: click each row until the LEDs of the inverter in the first phase 2 shelf flash for a few seconds. e. Use the pull down box to set the module number to 2 to correspond to AC phase 2 (for split phase, 2-pole and 3 phase systems). f. Repeat for a third module (select 3 to correspond to AC phase 3) if the system is 3 phase. 21. Now that the inverter modules in each shelf have a number, place one module in each of the AC input and output groups as follows: Select a row to send a Locate command; the inverter module LEDs will flash for a few seconds. Module number pull down box Figure 33 — Inverters > View Live Status 52 026-069-B0 Rev G a. Select Main Menu > Inverters > Group Mapping. b. Turn the inverter modules OFF by clicking the green power icon at the end of the row. The green power icons turn black in a few seconds. c. Match AC Input Groups to AC Output Groups by configuring the modules to the groups as shown in Figure 34. 22. DO NOT TURN THE INVERTERS BACK ON. PROCEED WITH THE NEXT STEP. For a 3-phase 120/208V system, click on heading button 3 For a split phase 120/240V system, click on heading button 2 Figure 34 — Matching AC Input Groups to AC Output Groups 23. Select Inverters -> Set Output to set the number of inverters in each phase of your system. Match the AC input phase to the corresponding AC output phase. a. Number of Modules: Enter the total number of inverter modules that will be installed for that phase. b. Redundancy: Enter the number of inverter modules that will provide redundant power for that phase. This information is used to provide system warnings. c. Phase Shift: Enter the phase shift for output group in your system configuration 1 2 3 Split phase (120/240 V) ° 0 180 N/A 2-pole (120/208) ° 0 120 N/A 3-phase (120/208 V) ° 0 120 240 d. Nominal Output Voltage: Enter 120 for all phases. e. Press Submit. CAUTION! The value entered in the Nominal Output Voltage field can change the actual AC output voltage of the inverters. Setting this value to anything other than 120 V will render the UL/CSA approval invalid. 24. Check for alarms (Inverters > View Live Status): alarm code (41) PHASE NOT READY indicates that the phase rotation of the AC Input is not correct. (The inverters will not start until the phase and rotation are correct.) If necessary, return to Inverters -> Set Output and correct the phases as shown: Unit 1 Unit 2 Unit 3 2-pole (120/208 V) ° 0 240 N/A 3-phase (120/208 V) ° 0 240 120 Validating the inverter configuration 026-069-B0 Rev G 53 25. Select Main Menu > Inverters > Group Mapping. 26. Turn the inverters on by clicking the black power icon at the right end of the row. 27. Switch on the Inverter AC Output breaker on the front panel of the AMPS80 HP. 28. Check the actual Inverter AC Output by measuring voltages on the AMPS80 HP AC output terminal block in the wiring compartment (Figure 22): a. The voltage from Neutral to L1 / L2 / L3 is approximately 124 V. At no load, the inverter output voltage is slightly higher than nominal. b. The voltage from L1 to L2 is approximately 240 V for a split phase system, 208 V for 2-pole, or the voltage from L1 to L2, L2 to L3, and L3 to L1 is approximately 208 V for a 3 phase system. c. The voltage from AC Input L1 to AC Output L1 is less than 30 V. Similarly, the voltage between L2 input and output and L3 input and output should be less than 30 V. Installing remaining inverters and rectifiers 29. Install the remaining inverters. The newly installed inverter modules will clone themselves to be identical to the initial modules that were installed and set up. 30. Select: Inverters > View Live Status at the CXC GUI, and verify that all inverters are recognized as follows: a. At this point the inverter module numbers are likely random. Note that the largest possible inverter number is 32, corresponding to the total number of inverter slots. Renumber the inverter modules in some logical pattern, such as from the bottom shelf up, using Inverters > View Live Status to locate and number each module (see Figure 33). 9 10 11 12 5 6 7 8 1 2 3 4 b. We recommend that you mark each physical inverter model with its corresponding inverter number. To help identify a specific Inverter, click on the inverter row in the View Live Status screen and the LEDs of that inverter will flash for a few seconds. c. Select: Inverters > Group Mapping and verify that all inverters are mapped to the correct AC Input Group and AC Output Group. If necessary, match the AC Input Group to the AC Output Group, as shown in Figure 34. d. Map inverters to DC Input Groups as discussed in section 3.6.2. 31. If the system includes the rectifier option: a. Install one rectifier module per shelf according to the instructions in the rectifier shelf manual that ships with the unit. b. Select: Rectifiers > View Live Status and verify that all rectifiers are recognized. 32. Use blank housings to fill slots without modules. See Figure 35. Final configuration and test 54 026-069-B0 Rev G WARNING! Use blanks to cover any open module slots. Do not leave any module slots open. Safe solution. Blanks must be used to cover any open module slots. Unsafe solution. Do not leave any module slots open. Figure 35 — Inserting blanks in open slots 33. Using the CXC controller web interface, configure any other parameters as required. Typical changes could include battery and charging values for the rectifiers, if installed, or changing the low and high voltage AC and DC warning and cutout limits. 34. At this point there should be no alarms present. Investigate and correct any alarm issues. a. You will see a “communication” alarm if the number of installed inverters do not match the number of modules set in the Inverters > Set Output menu. b. Refer to the Troubleshooting Chapter 8 for other alarms. 35. Test the functionality of various module alarms and controls as follows: Test Expected result Turn the bypass switch to BYPASS. Bypass Mode Active alarm Turn off the Inverter AC Input breaker. Inverter AC Input Breaker alarm and no change in AC output voltage Turn off the Inverter AC Output breaker. Inverter AC Output Breaker Off alarm and power to loads is off Verify the number of modules is correct in Inverters -> Set Output. Inverter Comms Lost alarm Pull out one inverter module. 37. Perform a system load test. Power up the equipment, one at a time. If possible, add heater or light bulb loads to increase the load temporarily. 38. Turn off the inverter AC input breaker to perform a full load test from DC power. 39. Test operation of Generator and external Maintenance Bypass Switch, if installed. WARNING! To prevent electrical hazards such as short circuits, ensure that the system is free of debris such as metal filings, screws, etc. after the installation is complete. 026-069-B0 Rev G 55 6. System Operation 6.1 Inverter Module Indicators AC output DC input AC input Status LEDs Figure 36 — Fig. 4.1 Inverter module status, power LEDs Output power indicator LEDs 6.1.1 Status LEDs Inverter Status LED Description Remedial action OFF No input power or forced stop Check AC input Permanent green AC Intput OK, normal operation None required Flashing green Inverter OK but conditions are not within normal parameters Check upstream and surrounding equipment Flashing green/orange alternating Recovery mode after boost Wait for a while (10 In short circuit condition) Permanent orange Starting-up mode Wait Flashing orange Modules cannot start Insert CXC Flashing red Recoverable fault Wait or attempt to clear fault condition by removing and reinserting the module Permanent red Non recoverable fault • Attempt to clear fault condition by removing and reinserting the module • Download CXC inverter alarm logs • Record the alarm(s) • Send module back for repair 56 026-069-B0 Rev G Output Power (redundancy not counted) The output power LEDs (located on the right side of the module’s front panel indicate the amount of power (percentage of rated power) provided by the module. The number of bars that are illuminated combined with whether or not they are on steady or flashing indicate the output power level or overload condition as shown in the figure below. < 5% 5% to 40% 40% to 70% 80% to 95% 100% Flashing On steady On steady On steady On steady 100% Overload Flashing Figure 37 — Output power indicator LEDs 026-069-B0 Rev G 57 6.2 T2S Inverter Control Card The CXC unified system controller monitors and manages inverter modules by communicating with the T2S inverter control card. The T2S may be useful in troubleshooting inverter alarms. LEDs 1 through 3 on the front panel of the T2S indicate the following alarm conditions: • Major Alarm LED • Minor Alarm LED Major alarm LED Minor alarm LED USB port Figure 38 — T2S front panel 58 NOTE: USB port functionality is disabled as of T2S software version 2.91. The T2S can be accessed from the CXC with current software versions. Access to locking latch. To remove T2S from Inverter shelf, insert a small flat screwdriver and gently press up on the latch, then pull out the T2S. 026-069-B0 Rev G 6.3 Using the CXC Unified System Controller The CXC controls the AMPS80 HP system and allows the user to set wide variety of parameters regarding the alarms and operational functionality of the rectifier and inverter modules. The following guide provides a brief overview of the controller; in-depth information can be found in the Technical Manual for the Cordex Controller Software. 6.3.1 Software Overview The CXC software enables control of an entire DC + AC power system via the CXC central touch screen user interface or web based monitoring and control interface. The software also allows the user to control temperature compensation, auto equalization, remote access, and battery diagnostics. Figure 39 — CXC system controller User interface Located on the front panel of each model is a 160-x-160-pixel touch screen liquid crystal display. This graphical user interface (GUI) enables a person to interact with screen selectable items. LED lights Each CXC has three LEDs located on the front panel. These are used to display the alarm status of the power system, CXC progress and status during startup, and file transfers. Alarm conditions The CXC illuminates the LED that corresponds to the system alarm status. The following show the corresponding alarm status for each LED color: • Green – OK, no alarms present. • Yellow – Minor alarm is present (no major alarms). • Red – Major alarm is present. • Only one LED is illuminated at a time during alarm conditions. 026-069-B0 Rev G 59 6.3.2 Communication and Control Connections Remove two screws and fold the controller front panel down to access the communication and control connectors. NOTE: The breakers located at the top of the AMPS80 (see Figure 1) protect the wiring to the CXC and alarm contacts of the different auxiliary contacts on the AC inverter input and output breaker, the TVSS and the MBS. Input and output signal connections Controller Ethernet port 6.3.3 Quick Start 1. To initiate a startup routine, switch on the power to the controller by closing the battery breaker. The controller performs a short self-test as it boots up. Alarm alerts are normal. The LEDs perform a scrolling pattern to indicate there is activity. Wait for the startup routine to finish. 2. Check and adjust alarms and control levels in the CXC submenus. 3. Check and adjust group settings in the INVERTERS and RECTIFIERS submenus; e.g. float, equalize voltage, etc. 4. Verify COMMUNICATIONS settings as needed. 5. Program the CXC TEMP COMP and AUTO EQUALIZE settings as needed. 6. Test relay OUTPUT ALARM\CONTROLS as needed; e.g. Major Alarm, CEMF, etc. 60 026-069-B0 Rev G 6.3.4 Startup and Reset Procedure When the CXC is powered-up or reset, it will first perform a 15 second self-test before displaying the Cordex logo. The three front-panel LEDs illuminate temporarily, and then extinguish after the system has finished its self-test. The GUI then displays the power system parameters during Normal operating mode. 6.3.5 Normal Operation This is the default-operating mode or “home page.” The GUI displays system status information and monitors all input channels. The Analog Signals Display on the home page show two lines of text for system voltage and current by default. Each active area is touch sensitive and responds best to a stylus suited for this purpose. Mode status Rectifier information (Converter report if applicable) Alarm condition icon 252W 2% AC Output Power % ratio of the Output Power VA or Watts whichever is higher Alarm indication Priority icon Date and time Software version Home page icon, tap to login Figure 40 — LCD active areas Login 1. Tap the Home icon (Figure 40) and select Login from the menu prompt. A pop-up window for password entry appears. 2. Enter 1234 for Supervisor access, 5678 (or nothing) for User access. In User access mode, the user cannot make changes to parameters but can navigate through menus. Figure 41 — Password entry pop-up window 026-069-B0 Rev G 61 6.3.6 Menu Navigation and Sample Programming Menu Navigation The sample screen shown below is presented upon login. From here, the user may navigate (e.g. browse – as on a personal computer) to each of the CXC menu items, including alarms, controls and configuration items. Battery volts and load current display Mode + temp comp. display The folders can be expanded (indicated by the plus sign shown here) if there are files inside. Tap on the folder icon or label to expand. Folders that can be collapsed will be shown with a minus sign. Sliders and scroll bars are used for navigation Buttons display here for additional functions, such as logout, programming, or save changes. Figure 42 — Navigation screen Option to Logout Via the Option button, a pop-up window enables the user to logout of the menu navigation screen and return to the home page. Follow the on-screen prompts to log out Option to save Saving in menu navigation (Supervisor only) will result in a prompt (pop-up window) to appear; e.g., “Save Complete” when the settings are downloaded. Follow the on-screen prompts to save or discard changes. Auto-logout time out After 20 minutes of inactivity (no user input), the CXC will automatically logoff the user. The CXC will discard any unsaved changes made by the user while logged in the system and return to Normal Operation mode. Backlight time out After one minute of inactivity (no user input), the CXC will automatically turn off the LCD backlight. Reset See below. 38335W 77% 38335W 77% Press Press Reset Press the “reset now” pop up when it appears. 62 026-069-B0 Rev G 6.3.7 Web-accessed Features This section describes the additional web page features for Inverter system. See the CXC Software manual for a complete description of the Cordex functionality. These instructions explain the interconnection and operation of the Cordex Controller with Inverter Support. The CXC has Ethernet capability that supports a web interface and SNMP for customer access to the equipment it is monitoring. The CXC also has a CAN bus for communication with the Cordex rectifiers and other peripheral equipment. Refer to the Cordex Software manual for details. Inverter monitoring and control The Inverter menu category consists of inverter alarms, signals and settings. Parameters can be accessed such as the number of acquired inverters, output voltage/power, and source position. Other features include: Input source, Inventory update,Inverter locate, Group assignment, Inverter firmware upgrade, major and minor alarms. Figure 43 — Illustration of web interface window (sample home page) 026-069-B0 Rev G 63 6.3.8 View live status inverter report This submenu of Inverters will enable the user to view, in a list report, all of the acquired inverters in the system. The first column lists the module numbers (ID) of the inverters; which may be re-assigned. The report then displays the unique serial number and module version, followed by the corresponding AC In, DC In, and AC Out group mapping values. The input frequency and temperature of each inverter completes the top portion of the report table. The bottom portion of the report lists all the currently active inverter module specific and system alarms. Figure 44 — View live status page A pull down menu allows the user to reassign the inverter module number in the report to correspond with its physical location on the shelf, for example. Selecting a module number that is already used will swap the two modules. Select a row to send a locate command. The inverter module's LEDs will blink momentarily Figure 45 — View live status — inverters page 64 026-069-B0 Rev G 6.3.9 View Group Status This submenu of Inverters displays the grouping of input sources and inverter output that share the unique operating parameters that were set in the Group Mapping menu. This screen can display 4 Inverter DC Input Groups and 3 AC Input Groups and 3 AC Output Groups. Three groups support a threephase input. Up to four groups for DC input sources. Figure 46 — View group status window — inverters page 026-069-B0 Rev G 65 6.3.10 Group Mapping A matrix of buttons allows the supervisor to map (enable/disable) the inverter's assignment per group for all of the acquired inverters in the system. Ensure phases are configured correctly before mapping inverters in the new groups and turning them on. "Power Buttons" Click these buttons to switch the inverter ON/OFF. Use with caution. Green = inverter is ON Black = inverter is OFF Amber/Red = inverter ALARM Figure 47 — Group mapping window Power buttons – Green indicates an inverter is turned ON. An amber/orange/yellow color indicates the inverter is in a recoverable error. The user can attempt to turn on the unit. The red color indicates the inverter is in an irrecoverable error and there is nothing the user can do to turn on the unit. Black indicates an inverter is manually OFF. Adding/removing groups (columns) may take a few seconds to incorporate the change. Changing the radio style buttons (rows) will also take time to apply changes; for example, approximately two seconds for one inverter and up to ten seconds for the maximum number of inverters (32). If there are inverters mapped to a column, disabling a column is prevented and a warning message is displayed. All inverters must be turned OFF to enable the AC Output Groups column buttons. The AC Output Groups of an inverter in the ON state cannot be changed. The radio buttons for that inverter AC output group will remain disabled until the inverter is turned OFF. 66 026-069-B0 Rev G 6.3.11 Set Inputs This submenu of Inverters enables the supervisor to set the parameters shown below: See general settings. For inverters, changes apply on a page by page basis; select Submit. Select Cancel to discard all changes made (including invalid settings). Figure 48 — Set input window 026-069-B0 Rev G 67 6.3.12 Set Output This submenu of Inverters will enable the supervisor to modify the following parameters: CAUTION! The value entered in the Nominal Output Voltage field can change the actual AC output voltage of the inverters. Setting this value to anything other than 120 V will render the UL/ CSA approval invalid. Number of Modules Total number of inverter modules installed for that phase. Setting this number to something different from the actual number of installed modules results in the alarm condition Inverter Comms Lost. Redundancy Defines the number of inverter modules that will provide redundant power for that phase (used to provide system warnings). Phase shift Assigns a phase shift (in degrees) to the AC output group. Nominal Output Voltage Enter 120 for all phases. Ensure that the Phase Shift is set correctly before mapping inverters in the new groups and turning them on. An invalid setting (for any configurable parameter) will be indicated with a red exclamation mark. For inverters,changes apply on a page by page basis; select Submit. ! Hovering the mouse on the exclamation mark reveals the error message. Select Cancel to discard all changes made (including invalid settings). Figure 49 — Set Output window 68 026-069-B0 Rev G 6.3.13 General Settings This submenu of Inverters enables the supervisor to set the parameters shown below: Value 0 or 100 only. For inverters, changes apply on a page by page basis; select Submit. Select Cancel to discard all changes made (including invalid settings). Figure 50 — General settings window The Free Running Frequency min/max setting is determined by the General Settings value. If AC input is present, AC output will synchronize; however an irregular AC voltage could damage the inverters. 6.3.14 Manage Config File The inverter settings have their own configuration and are not part of the full site configuration file. Refer to Chapter 10 for a list of the configuration file parameters and steps to save the file and upload it to another system. Figure 51 — Manage Config File window 026-069-B0 Rev G 69 6.3.15 Alarms Standard Inverter Alarms Alarms for the following conditions can be configured from the Alarms > Configure Alarms menu category (refer to the controller software manual for more details on alarm configuration): Alarm Name Alarm Condition Inverter Major Fail Count Number of failed Inverters equals or exceeds a user configured threshold Inverter Minor Fail Count Number of failed Inverters equals or exceeds a user configurable threshold Inverter Comms Lost Controller loses communications with any one inverter. The number of inverters must be correctly identified in the Inverters > Set Output menu. Inverter AC Input Fail Main AC input of the inverter is lost Inverter Alarm Any individual or system alarm is detected Figure 52 — Configure alarms window Custom Inverter Alarms—Mapping Alarms to Relays Custom inverter alarms can be mapped through the digital inputs to available relays. Refer to the latest version of the CXCU Controller software manual. 70 026-069-B0 Rev G Alarms reported by T2S are reported in the event logs. Figure 53 — T2S alarms in event logs 6.3.16 Retrieve Inverter History File A new submenu Retrieve History File under Inverters opens a page with a Save Inverter History File button to download the inverter alarm history file to local disc. This functionality is similar to downloading the inverter configuration file (see section 10.1. Figure 54 — Retrieve inverter alarm history file 026-069-B0 Rev G 71 6.3.17 Signals The Signals submenu displays inverter signals for all acquired inverters in the system. The following signals can be used for logging and equation building. Figure 55 — Signals (inverters) window 72 026-069-B0 Rev G 6.4 Rectifier Features 6.4.1 Rectifier Front Panel Lights Refer to the Cordex CXRF 48-1.8 kW manual for further details. AC LED light AC LED light The top LED (green) is on when AC is within valid range. AC voltage is invalid if the AC Mains Low or AC Mains High alarm is active. The LED turns off when AC has failed. DC LED light Alarm LED light DC LED light The middle LED (green) is on when the rectifier is delivering power to the load. The LED will flash when communication is lost. The LED turns off when the rectifier is off; e.g., when commanded via the controller. Figure 56 — Cordex CXRF 48 V rectifier Alarm (ALM) LED light The bottom LED (red) is on continuously in the event of an active Module Fail alarm; if the module is unable to source power as a result of any of the following conditions: • Output fuse blown • AC Mains Input Fail • Module fail (ramp test fail) • High voltage (OVP) shutdown • Thermal shutdown • Local shutdown • UPF fail • No output power • Fan fail. The LED will flash (~2Hz) when a minor alarm is detected; if the modules output capability has been reduced or a minor component failure is detected during the following conditions: • VAC meter fail • AC foldback • Remote equalize • Fan fail • Low output voltage • High output voltage • Current limit (programmable option) • Power limit (programmable option) • High temperature foldback • Temperature sense fail • Soft start operation • Communications lost. The LED remains off in the absence of an alarm. If the unit output is not connected to a battery or parallel rectifier, the LED will extinguish if no AC power is present. 026-069-B0 Rev G 73 6.4.2 LED Activity During Rectifier Software Upload When a rectifier software upload is in progress, the LEDs will behave in a distinctly different way to indicate new rectifier software is being transferred from the CXC. When a rectifier data transfer is in progress, all three LEDs will flash in a sequence lasting 1.5 seconds. When the last LED is lit, the sequence is repeated beginning at the first LED. 6.4.3 LED Activity During Rectifier ‘Locate Module’ Command from Controller When the ‘locate module’ command has been received from the CXC, the LEDs will behave in another distinct fashion so that the rectifier is easier to visually identify among adjacent rectifiers. This state is entered when commanded via the CXC. The LEDs will flash in a ping-pong pattern repeating every 2 seconds. The ping-pong pattern lights each LED sequentially. After the last LED is lit, each LED is lit in reverse sequence. When the first LED is lit, the pattern repeats. The effect makes it appear as if the light is bouncing between the first and last LED. 6.4.4 True Rectifier Module Fail Alarm The power modules have a “true” fail alarm. This provides a true indication of the power module’s ability to source current. When the module’s output current drops below 2.5% of the rated output a low output current condition is detected and the Module Fail detection circuit is activated. This circuit momentarily ramps up the output voltage to determine if the module will source current. If no increase in current is detected, the Module Fail alarm is activated. The module will test once every 60 seconds for the condition until current is detected. Output voltage ramping will cease upon detection of Current1. A minimum 2.5% load is required to avoid the Ramp Test Fail alarm; this can typically be provided with the parallel system battery. Activation of this alarm could indicate a failed module or a failed load. For Cordex rectifier systems without batteries (or with a very light load; below 2.5% of rated output) it is recommended that the ramp test be disabled to avoid nuisance alarms. The Ramp Test feature is enabled/ disabled via the CXC menu item: Rectifiers, Configure Settings. 74 026-069-B0 Rev G 6.4.5 Mapping Alarms to Relays 1. Connect a computer to the controller. Refer to the controller software manual. The 48 V DC power must be switched on before the controller can operate. Provide either DC power on the main DC1 or DC4 connections or switch on at least one rectifier. 2. Navigate to Alarms > Configure Alarms. 3. Select Digital Inputs. Select Digital Alarms 4. Select the desired relay. In this example K7 and K8 are available. Select desired relay If this popup appears select another relay 026-069-B0 Rev G 75 5. After changes have been made, press Submit Changes. 6. Accept changes. Press Accept 7. Hook up control wires to the selected relay. Relays 76 026-069-B0 Rev G 6.5 Synchronization with a Maintenance Bypass Switch (MBS) 6.5.1 Internal Maintenance Bypass Switch If an internal MBS is present, implement the following sequence before switching the unit from bypass mode to inverter mode. Switching from Bypass Mode to Inverter (On-line) 1. Switch on the Inverter AC Input breaker. 2. Wait for the inverters to synchronize to the line—all status LEDs on the inverters will turn green. 3. Switch on the Inverter AC Output breaker. 4. Smoothly rotate the maintenance bypass switch in a clockwise rotation from BYPASS to INVERTER. 6.5.2 External Maintenance Bypass Switch Before switching an external MBS from UTILITY mode to UPS mode: 1. Switch on the AMPS80 Inverter AC Input breaker. Wait for the inverters to synchronize to the line, and for all status LEDs to turn green. 2. Switch on the AMPS80 Inverter AC Output breaker. 3. Follow the steps in the external MBS user manual to switch the external MBS bypass switch to UPS. 026-069-B0 Rev G 77 7. Maintenance 7.1 Preventive Maintenance This equipment requires regular maintenance. The maintenance must be done by qualified service personnel only. Contact Alpha Technologies at 1-888-462-7487 for any assistance with maintenance. WARNING! WARNING: HIGH VOLTAGE AND SHOCK HAZARD Use extreme care when working inside the enclosure/shelf while the system is energized. Do not make contact with live components or parts. Static electricity may damage circuit boards, including RAM chips. Always wear a grounded wrist strap when handling or installing circuit boards. Ensure redundant modules or batteries are used to eliminate the threat of service interruptions while performing maintenance on the system’s alarms and control settings. 7.2 Recommended maintenance schedule Task: Interval Clean ventilation openings 1-6 month Inspect all cable connections, re-torque if necessary 1 year Verify alarm/control settings 1 year Verify alarm relay operation 1 year Verify circuit breaker operation 1 year 7.3 Tools, Spare Parts and Equipment Table I — Tools Required 78 Service /Maintenance Commissioning Torque wrench X X #2 Philips screw driver X X #2 flat head screw driver (3/16") width head X #1 flat head screw driver (1/8") width head X Small flat head screw driver (1/16") width head X 9/16" hex driver X 3/8" hex driver X 7/16" combo wrench X 7/16" flat gear ratchet X 9/16" combo wrench X 9/16" flat gear ratchet X 11/16" combo wrench X 11/16" flat gear ratchet X 6" ratchet extension X 3" ratchet extension X X 026-069-B0 Rev G Table I — Tools 3/8" ratchet socket X 7/16" ratchet socket X 7/16" ratchet socket extended neck X 9/16" ratchet socket X 9/16" ratchet socket extended neck X 5/8" ratchet socket X 5/8" ratchet socket extended neck X 10 mm combo wrench X 10 mm flat gear ratchet X 3/8" Allen key on a 3/8" ratchet socket X X 3/16" Allen key on a 3/8" ratchet socket X X Flash light or trouble light X X Crossover Ethernet cable X X Straight through Ethernet cable X X Computer with Ethernet port and Internet Explorer X X True RMS digital multimeter X X Service /Maintenance Commissioning Other Recommended Tools Needle nose pliers X Side cutters X Wire stripper 10 AWG to 20 AWG X Exacto knife X Measuring tape with inches and cm X Scissors X Rubber mallet 1-1/4" diameter X Table J — Spare Parts P/N Part Description 014-201-20 AIM2500 inverter module, 2.5 kVA, 2.0 kW 571-005-10 Inverter black plastic front assembly 7400026 Inverter fan 010-580-20-040 1.8kW rectifier module for AMPS80 shelf (de-rated to 1150kW for single phase) 747-272-20-000 Rectifier fan (hybrid option only) 460-421-19 Rectifier Fuse, 200A, In-line (hybrid option only) 741-032-21 Blanking module for inverter or rectifier slot 018-557-20-342 CXCR controller 543-027-19 CanBus connector cable 545-596-10 CAT5 Ethernet connector cable 5450196 Connector, Male, 3.81mm pitch, 8 pin, spring loaded, screw terminals (rear DC wiring panel) 162-600-19 Surge suppression replacement module, red stripe, Line-Ground, 40kA rating 162-601-19 Surge suppression replacement module, green stripe, Neutral-Ground, 40kA rating 741-021-31 AMPS80, TVSS 3-ph, 140kA rating per phase (TVSS option only) 741-021-21 AMPS80, TVSS 2-ph, 140kA rating per phase (TVSS option only) 741-021-41 AMPS80, TVSS 1-ph, 140kA rating (TVSS option only) 026-069-B0 Rev G 79 7.4 Replacing the T2S Inverter Control Card CAUTION! Perform this procedure with the system in bypass mode and/or during a scheduled maintenance window. Step 1: Removal To release the T2S from the shelf, insert a small flat screwdriver in the square hole under the USB port and lift up the lock pin. Then pull out the module. Step 2: Replacement and Initialization Insert the new T2S into the system. Once inserted, it will take about 10 minutes (or longer with fully loaded systems) for the T2S to initialize with the inverter modules. CAUTION! Ignore error/alarm conditions displayed during initialization. Do not remove any system components during the initialization sequence. Interruptions to the initialization sequence can result in software corruption and reduced functionality. When the T2S is initially inserted, all LEDS are off for a few seconds. Initialization is in progress: Top 2 LEDs: solid green Bottom LED: off DO NOT INTERRUPT Initialization complete: Top 2 LEDs : solid green Bottom LED: flashing green Figure 57 — T2S LED sequence during initialization 80 026-069-B0 Rev G Step 3: Inventory Update When the initialization sequence is complete (top two LEDs solid green and the bottom LED flashing green), use the CXC touch display to perform an inventory update. The CXC memory is cleared of the original T2S and updated to the latest installed T2S. Allow up to five minutes upon completion of the inventory update for the CXC to display the inverter information. Tap on the number of rectifiers (will be 0 if no rectifiers in the system.) Tap on Inventory Update Figure 58 — Update Inventory steps If the system remains in alarm or the inverter information does not appear after five minutes, call Alpha Technologies Technical Support at 1-888-462-7487 for assistance. A laptop and crossover cable is required for troubleshooting activities. 7.5 Inverter or Rectifier Fan Replacement To replace a rectifier fan, refer to the manual that shipped with your system. To replace an inverter fan, refer to Section 7.6 to remove and replace the inverter. 1. Slide the module out of the shelf and wait two minutes for the module capacitors to discharge. 2. Disconnect the fan power wires from the module. 3. Note the direction of the airflow and remove the fan from the front panel. 4. Install the replacement fan with the airflow in the same direction. 5. Reconnect the fan power wires to the module. 026-069-B0 Rev G 81 7.6 Replacing an AIM2500/1500 Inverter Module CAUTION! This system is designed for use with Alpha AIM2500 inverter modules (Alpha p/n 014-20120). Use of alternate inverter hardware and/or unapproved firmware versions may cause system instability and will invalidate system warranty. Consult Alpha customer service or technical support for additional details. CAUTION! Improper installation or removal of modules can break latching components. Removing a module from a working system generates an alarm, which will not clear until the module is replaced or the number of modules in that phase is reduced by the number of modules removed. STEP1: Insert a flat head screw driver into the center flap notch and pry open the center flap. Then pull out the module by pulling on the center flap with both hands. STEP2: With the module plastic front grill in the open/ unlocked position, slide the module all the way into the slot Press the module into place and ensure connection is engaged. Close the flap. Unlock A new module can take between 5 and 10 minutes to synchronize with the T2S controller and clear any alarms. Do not interact with the system during the initialization process. When the initialization sequence is complete, the three LEDs on the left hand side of the inverter module turn a solid green. AC output DC input AC input all green Use the touch display or a web connection to confirm that the # of modules versus actual installed are equal. (Inverters > AC Output Groups on the web interface). If the system remains in alarm or the inverter information does not appear after five minutes please call Alpha Technologies Technical Support at 1-888-462-7487 for assistance. A laptop and crossover cable is required for troubleshooting activities. 82 026-069-B0 Rev G 7.7 Surge Suppression Replacement WARNING! There may still be live parts inside the system and shock hazards may be present throughout this procedure. 1. Turn off the inverter input breaker. Replaceable parts Alpha part number Description 2. Remove the wiring access panel. 162-600-19 3. Pull out the surge suppression module. Surge suppression replacement module, red stripe, Line-Ground, 40 kA rating 162-601-19 Surge suppression replacement module, green stripe, Neutral-Ground, 40 kA rating 4. Replace the module with one of the same type. Surge suppression Red stripe = L-G Green stripe = N-G 7.7.1 Service Entrance Grade Surge Suppression Replacement Front and left side access may be required to properly service the service entrance grade TVSS located behind the CXCR control panel. WARNING! There may still be live parts inside the system and shock hazards may be present throughout this procedure. Make sure the spare parts are available on site. Replaceable parts Alpha part number Description 741-021-31 AMPS80, TVSS 3-ph, 140kA rating per phase (TVSS option only) 741-021-21 AMPS80, TVSS 2-ph, 140kA rating per phase (TVSS option only) 741-021-41 AMPS80, TVSS 1-ph, 140kA rating (TVSS option only) 026-069-B0 Rev G 83 Side Access Replacement This is the preferred replacement procedure. 1. Turn off the inverter input breaker. 2. Remove the side access panel. 3. With the proper tools, reach in and remove the screws holding the surge suppression assembly. 4. Replace the module with an Alpha service entrance grade surge suppression assembly. Bolts holding surge suppression assembly Front Access Replacement 1. Turn off the inverter input breaker. 2. Remove the screw securing the CXCR unit. 3. Remove the 4 mounting screws that hold the CXCR to the chassis. 4. Pull the CXCR out and to the left. Do not remove any of the wires from the CXCR. 5. Dangle CXCR unit gently. 6. With the proper tools, reach in and remove the bolts holding the surge suppression assembly. 7. Replace the module with an Alphaservice entrance grade surge suppression assembly. 84 Bolts holding surge suppression assembly 026-069-B0 Rev G 7.8 Fuse Replacement For hybrid systems equipped with rectifiers, there are two fuses located behind the DC input breakers shelf (see Figure 59). These fuses are sized to blow only if there is a wiring fault in the system. These fuses must be replaced by a qualified service person. 1. Turn the rectifier breakers off. 2. Disconnect the battery feeds to the AMPS unit. WARNING! There may still be live parts inside the system and shock hazards may be present throughout this procedure. 3. Remove the left side panel. 4. Remove the ¼-20 nut holding the fuse to the fuse holder/bracket (594-110-13). Use a 7/16 socket or wrench. 5. Remove the ¼-20 screw and ¼-20 nut holding the wire to the fuse. Use a 7/16 socket or wrench. 6. Replace the fuse with a fuse of the same rating and type: Replaceable parts Alpha part number Description 460-421-19 Fuse, 200A, In-line Fuses Figure 59 — Rectifier fuse locations 026-069-B0 Rev G 85 7.9 Synchronization After Maintenance or Repair Implement the following sequence before switching the unit from bypass mode to inverter mode. 1. Switch on the inverter input breaker. Wait for the inverters to synchronize to the line, and for all status LEDs to turn green. 2. Switch on the inverter output breaker. 3. If present, switch the internal bypass switch to AMPS80 HP system. If present, switch the external bypass switch to AMPS80 HP system. 86 026-069-B0 Rev G 8. Troubleshooting 8.1 Non Recoverable Error Inverter status LEDs Output power status LEDs The status LEDs illuminate permanently red when a non recoverable error occurs. Thanks to its double input port, the AMPS80 HP inverter module will actually stop when either the output stage is non recoverable or when both input stages are faulty. Generally, a non-recoverable error cannot be erased and the module must be returned for repair. 8.2 Recoverable Error A recoverable error is a kind of protection that acts when, some parameters exit temporarily from their proper limit range. Stopping the module or removing it from its slot and plugging it back in may solve the problem. For more detailed diagnostics, use the Ethernet port of the CXCR to view the alarm description. See Alarm descriptions below. The inverter alarms can be found in Inverters > View Live Status. 026-069-B0 Rev G 87 8.3 Alarm Codes All alarm codes are listed in Table K. The following alarm codes are included here as well to provide more information. 8.3.1 No Ethernet Communication For a direct connection to the CXCR, verify that you are using a cross over cable, that your wireless connection is turned off, and that your local area network connection is set up as shown below. Reset the CXCR by using the LCD touch screen as shown below: 252W 2% Press Press Reset Press the “reset now” pop up when it appears. To reset the T2S, remove it from the system, then hook it back up. 88 026-069-B0 Rev G 8.3.2 System Saturated The system saturated alarm defaults to 80% load on the non redundant inverters. To remove this alarm, add more inverters or reduce the amount of redundant units. 8.3.3 AC Secondary Source Lost The AC Secondary alarm happens when the DC is removed from the system and when settings in the group mapping screen are incorrect. Click to remove 026-069-B0 Rev G Click to add 89 8.3.4 AC Mains Lost The AC Mains Lost alarm happens when the AC input does not meet the correct voltage, phase, or frequency. When AC mains is lost the UPS goes into Inverter Mode. This alarm is sometimes accompanied by other alarms. Both the T2S and CXC software give inverter alarm AC Mains Source Lost when a column is not used (or accidentally added) in the AC Input Group in the Inverters>Group Mapping screen. 8.3.5 Manual Off The Manual Off alarm happens when one or more inverters have been turned off in the group mapping screen. 8.3.6 Phase Not Ready Phase not ready alarm happens when the inverter thinks it should be in a certain phase and the input to it is another phase. This can be correct either by changing the input wiring to the AMPS80 HP or by changing the phase in the group mapping settings screen. 90 026-069-B0 Rev G Table K — Alarm Codes Alarm Type Description Cause Solution Error Not Recoverable 0 NO ERROR No error present on the system N/A N/A 1 FAN FAILURE Failed fan or speed inappropriate Dust on FAN or FAN failure Replace fan or clean it 2 TEMP TOO LOW Measured temperature inside the module is below -20°C The temperature sensor Replace the module 3 FLASH FAILURE Internal software is corrupted Replace the module 4 Vref FAILURE Internal voltage reference is out of range Replace the module 5 ALIM AUX1 FAIL Internal 15V supply is out of range Replace the module 6 ALIM AUX2 FAIL Internal -15V supply is out of range Replace the module 7 TOO MANY STARTS Too many starts in 1 minute ( 10 times in 1 minute) 8 This problem usually happens when the input source is not powerful enough to supply the load. The inverter has a correct DC voltage and starts. After it has started, the power taken on the input source is too important and the DC voltage falls under the minimum and the inverter stops. After 10 attempts to start, the inverter stops. The aim of this error is to avoid a situation in which the inverter keeps starting and stopping. Correct the problem : increase the input power, reduce the load, increase the voltage hysteresis… Then, turn the module OFF to clear the error and back ON (or, if you have no access to the supervision, unplug and replug the module) OVERCURRENT The AC output current has OUT been too high for too long Problem with IGBTs or current sensor or output stage. This can also happen in very harsh surge conditions. Reset the module and try again. If the problem persists, replace the module 9 Vint TOO LOW Intermediate voltage has been too low Many causes Reset the module and try again. If the problem persists, replace the module. 10 Vint TOO HIGH Intermediate voltage has been too high The most likely cause is that energy has been reinjected into the module (by the load, if the Acout has been shortcircuited with the grid…) Check if there is a problem around the module which could explain the error. Then, reset the module and try again. If the problem persists, replace the module. 11 Vout PI2 ERROR Error in the self-test during the starting process This can be caused by a problem on the IGBTs Reset the module and try again. If the problem persists, replace the module.. 12 Vout MPI2 ERROR This can be caused by a problem on the IGBTs Reset the module and try again. If the problem persists, replace the module. 026-069-B0 Rev G Error in the self-test during the starting process 91 Table K — Alarm Codes Alarm Type Description Cause Solution 13 Vout INVERSE Error in the self-test during the starting process This error happens if the module is not configured on the correct output phase Verify the phase configuration of the modules. Then, reset the module and try again. If the problems still happens, replace the module 14 OVRLOAD TOO LONG Output voltage too low due overload for a long time Load too higher for the inverter quantity operational on system. Reduce load or add inverter on the system. 15 OUT FUSE FAILURE Module is delivering no power to the load while the other module on the same phase does. Output fuse open / problem in the connection of ACout Check if the problem can be caused by something external to the module. If not, replace the module 16 VoutIout TOO LOW Output voltage is too low while the output current is in an acceptable range Problem inside the module. Reset the module and try again. If the problems still happens, replace the module 18 VoutPout TOO LOW Output voltage is too low while the output power is in an acceptable range Problem inside the module. Reset the module and try again. If the problems still happens, replace the module 19 RAM FAILURE Values in the RAM are corrupt Replace the module Error recoverable 33 92 OUT OF SYNC Inverter is not synchronised with other inverters Problem on the communication bus Check bus. Problem inside the module Replace the module 34 TEMP TOO HIGH Temperature on heat sink too high Temperature too high in the room, cooling insufficient, or inverter component defective Check temperature inside inverter. Check room temperature. Replace FAN. Replace inverter 35 COM BUS FAILURE The inverter doesn't see itself on the bus Problem on bus or internal problem Check bus / replace module 36 COM BUS CONFLICT 2 TSI have same ADX 37 NO POWER SOURCE No input AC and DC available on inverter Will self repair No supply voltage Check AC input voltage at AC input and DC input terminals Circuit Breaker open Check Circuit breakers Wiring fault Check input voltage at 38 COM BUS FAILURE TSI must have a T2S to start No T2S in the system Add a T2S 39 PARAM QUERY Inverter is updating his parameters Part of starting process Nothing to do 40 PARAM MISMATCH Configuration file incompatible with TSI inverter Problem with parameters Check configuration file and re-send it 41 PHASE NOT READY The phase inverter is not configured for this phase ( multiple phase system) AC not present, or phase not configured Reconnect AC IN, or configure the inverter phase in Inverters > Group Mapping 42 STATUS 42 43 INV MISMATCH Inverter incompatible with inverter installed in system Inverter for pack solution. Limitation to 6 inverter on the same BUS Remove incompatible inverter 026-069-B0 Rev G Table K — Alarm Codes Alarm Type Description Cause Solution 44 BACKFEED ERROR ACin is supplied by the ACout of the module 45 Vint TOO HIGH Same as error 10 but recoverable 65 TSI COM BUS FAIL The inverter doesn't see itself on the bus TSI Communication problem Hardware problem. Replace inverter 66 T2S COM BUS FAIL The inverter doesn't see itself on the bus T2S Communication problem Hardware problem. Replace inverter 67 TSI COM BUS FAIL No synch top received on TSI BUS No Sync top from TSI inverter Hardware problem. Replace inverter 68 T2S COM BUS FAIL No sync top received on T2S BUS No sync top from T2S inverter 69 LOADSHARING LOW The inverter gives less power than other inverters in parallel This alarm should disappear by itself. If it remains permanent, the module probably has a problem. 70 LOADSHARING HIGH The inverter gives more power than other inverter in parallel This alarm should disappear by itself. If it remains permanent, the module probably has a problem. 71 VOUT CHANGING Output voltage is changing its nominal value Happens when there is a config change to the voltagelasts 1 min for a change from 100V to 120V NEVER INSERT A NEW MODULE WHILE THIS IS IN PROGRESS! N/A 72 OVERLOAD CURRENT The load current is greater than the current available from inverter Load too high or some inverters are failing. Reduce load or add inverter to the system. 73 COM BUS MISMATCH The modules seen on bus A are different that modules see on bus B Alarm- triggered when it sees more or less modules on bus A vs bus B - used to identify a module problem while the module is still running Hardware problem. Replace inverter 74 IMMINENT START Reported from a stopped Start up procedure module 10 seconds before it is going to start N/A 75 BOOSTER NOT READY The boost function is not allowed at this time Less than 60 second, after previous boost action Wait 1 minute to recover from the situation 76 OVERLOAD NOT READY The overload function is not allowed at this time Less than 55 second, after previous overload status Wait 1 minute to recover from the situation 77 TEMP DERATING Heat sink temperature over Temperature measured from the heat sink - 88°C for rating AIM2500 module and 70°C for AIM1500 module Check temperature inside inverter. Check room temperature. Replace FAN. Replace inverter 78 OVERLOAD POWER The load power is greater than the power available from inverter Reduce load or add inverter on the system. 79 EEPROM DEFECT The EEPROM has a problem 026-069-B0 Rev G Grid is not present and there is a short circuit between ACin and ACout Requested power greater than available power Hardware problem. Replace inverter. Replace Inverter 93 Table K — Alarm Codes Alarm Type Description Cause AC in below 100V - reduce power from the AC input and pull power from the DC input Solution 80 BROWNOUT DERATING The nominal power is not available from the AC Grid. The inverter could compensate from DC source. Check AC grid and configuration 81 FAN LIFE ELAPSED Fan running time has exceeded preset value to advise fan replacement Replace FAN and reset the counter time 82 REMOTE OFF Inverters are set to OFF remotely Inverter are switch OFF by remote function Replace FAN and actualize the counter time 83 MANUALLY OFF The inverter is manually set to OFF. Inverter is switched OFF by the OFF function in web interface Start inverter through the web interface Start inverter by REM ON/OFF terminal Status AC on Inverter 94 160 ACin OK The grid AC is coming back inside the preset range AC voltage coming back inside the range N/A 161 Vac_in too low The input grid is below the preset range AC voltage outside the range Check AC grid and configuration 162 Vac_in too high The input grid is upper the preset range AC voltage outside the range Check AC grid and configuration 163 ACin IMP too high This status appears during The module can stay in this the starting procedure of the status if it can't start. This ACinput stage happens if the power of the AC supply is too low 164 STATUS 164 165 Vac_in too LOW The input grid is below the preset range AC voltage outside the range (RMS value) Check AC grid and configuration 166 Vac_in noo HIGH The input grid is above the preset range AC voltage outside the range (RMS value) Check AC grid and configuration 167 ACin NOT CONFORM ACin is outside the range AC voltage outside the range (instantaneous value) Check AC grid and configuration 168 ACin NOT CONFORM ACin is outside the range AC voltage outside the range (instantaneous value) Check AC grid and configuration 169 ACin NOT CONFORM ACin is outside the range AC voltage outside the range (instantaneous value) Check AC grid and configuration 170 STATUS 170 171 ACin NOT CONFORM ACin is outside the range AC voltage outside the range (instantaneous value) Check AC grid and configuration 172 ACin THD too high THD grid is outside the allowed value THD AC voltage outside the range Check AC grid THD 173 STATUS 173 174 STATUS 174 175 ACout NOT SYNC The AC out is not synchronized with grid Check synchronization between AC in and AC out Check AC grid and configuration 176 INV NOT SYNC The AC out is not synchronized with grid Check synchronization between AC in and AC out Check AC grid and configuration 177 SYNC FAILURE Inverter not synchronized Check synchronization between AC in and AC out Check AC grid and configuration 026-069-B0 Rev G Table K — Alarm Codes Alarm Type Description Cause Solution 178 STATUS 178 179 Vac_in TOO LOW The input grid is below the preset range Check AC In configuration and live value Check AC grid and configuration 180 Vac_in TOO HIGH The input grid is above the preset range Check AC In configuration and live value Check AC grid and configuration 181 Fac_in TOO LOW Input frequency is lower than the preset value Check AC In configuration and live value Check AC grid and configuration 182 Fac_in TOO HIGH Input frequency is higher of the preseted value Check AC In configuration and live value Check AC grid and configuration 183 PHASE NOT READY Inverter not ready to deliver power on the phase Inverter not configured on the Reconnect AC IN, configure the phase inverter phase 184 BACKFEED ERROR Same as 44 189 OVERCURRENT ACinput Current is too high ACin Surge / hardware problem on ACinput stage Retry / replace module if the problem still happens 191 SCN FAILURE Short-circuit Booster failure The booster (which allows 10 Iin on short circuits) has a problem Replace inverter 193 DCin OK Input DC voltage inside the range 194 Vdc_in TOO LOW Input DC voltage lower than the preset value. Check VDC parameter and live value Check DC from battery and configuration 195 Vdc_in TOO HIGH Input DC voltage higher than the preset value. Check VDC parameter and live value Check DC from battery and configuration 202 Vdc_in TOO LOW Input DC voltage lower than the preset value. Check VDC parameter and live value Check DC from battery and configuration 203 Vdc_in TOO LOW Input DC voltage lower than the preset value. Check VDC parameter and live value Check DC from battery and configuration 204 Vdc_in TOO HIGH Input DC voltage higher than the preset value. Check VDC parameter and live value Check DC from battery and configuration 210 Vdc_in TOO LOW Input DC voltage lower than the preset value. Check VDC parameter and live value Check DC from battery and configuration 211 Vdc_in TOO HIGH Input DC voltage higher than the preset value. Check VDC parameter and live value Check DC from battery and configuration 226 NO Write "No Transmission" TRANSMISSION event in log file when the inverter is no longer seen by the T2S. Alarm from the T2S - does not see any TSI- all modules - system alarm or when the T2S does not see one of the modules Replace defective inverter or adapt configuration 227 DIG INP1 FAILURE Generate alarm code 227 and appropriate text when digital input 1 changes state Digital input has changed status Check device connected on input digital 228 DIG INP2 FAILURE Generate alarm code 228 and appropriate text when digital input 2 changes state Digital input has changed status Check device connected on input digital 229 REDUNDANCY LOST 229 and text "Redundancy Lost" when condition is true Lost of inverter redundancy Replace defective inverter or adapt configuration Status DC on Inverter Nothing to do T2S Event 026-069-B0 Rev G 95 Table K — Alarm Codes Alarm Type 96 Description Cause Solution 230 REDUND + 1 LOST Generate alarm code 230 and text "Redundancy + 1 Lost" when condition is true Lost of inverter redundancy + 1 inverter Replace defective inverter(s) or adapt configuration 231 SYS SATURATED Generate alarm code 231 and text "Sys Saturated" when the condition is true Load of system is greater than the preset value Reduce load, or add inverter to the system or reduce the number of redundant units in Inverters > Set Output, or change the alarm level trigger. 232 MAIN SOURCE LOST Generate alarm code 232 and text "Mains source lost" when the condition is true Priority source lost (depends on the configuration AC/AC or Online) 1) In AC/AC configuration: Reconnect AC IN or check configuration or check live value. 2) In Online configuration: Reconnect DC or check configuration or check level voltage 233 SEC SOURCE LOST Generate alarm code 233 and "Sec Source Lost" when the condition is true Secondary source lost (depends on the configuration AC/AC or Online) 1) In ONLINE configuration: reconnect AC IN or check configuration or check live value. 2) In AC/AC configuration: reconnect DC or check configuration or check level voltage 234 T2S BUS FAIL Generate alarm code 234 and "T2S Bus Fail" when the condition is true The communication bus to T2S has failed Hardware problem. Replace T2S 235 T2S FAILURE Generate alarm code 235 and text "T2S Failure" when the condition is true T2S has failed Hardware problem. Replace T2S 236 T2S STARTED Write event "T2S Started" in log file when T2S is started (powered up) T2S has started 237 LOG CLEARED Write event "Log Cleared" in log file when the log is cleared T2S has cleared the log 238 CONFIG MODIFIED Write event "Config Modified" in log file when configuration is modified. Configuration is modified 239 NEW MOD DETECTED Write event "New Mod Detected" in log file when new module is seen by T2S One more module is plugged 240 DATE & TIME MOD Write event "Date & Time Mod" in log file when date and/or time are modified Date and time are modified 241 CFG READ IN MOD Write event "Cfg Read In Mod" in log file when T2S had read the configuration file from TSI inverter. Tipically after insterting new T2S on live system. T2S has read the CFG 242 LOG NEARLY FULL Generate alarm code 242 and text "Log Nearly full" when the condition is true This item will be set as, No alarm, Minor or major alarm. (see configuration file) Clear log file 243 T2S FLASH ERROR Flash of T2S is corrupt and has failed T2S failure Hardware problem. Replace T2S 026-069-B0 Rev G 9. System Specifications Model AMPS80-3-75 AMPS80-3-30 Input & Output Phase 120/208 V 3-ph 120/208 V 3-ph Nominal Output Power (max) 7,500 to 75,000 VA Output Power (resistive load) AMPS80-2-40 AMPS80-2-20 120/240 V or 120/240 V or 120/208 V 2-pole 120/208 V 2-pole 7,500 to 30,000 VA 5,000 to 40,000 VA 5,000 to 20,000 VA 6,000 to 60,000 W 6,000 to 24,000 W 4,000 to 32,000 W 4,000 to 16,000 W Maximum Output Current 208 Arms / phase 83 Arms / phase 167 Arms / phase 83 Arms / phase Max. no. of 2,500 VA/2,000 W inverter modules 30 12 16 8 Min. no. of 2,500 VA/2,000 W inverter modules 3 3 2 2 Technology Twin Sine Inverter (TSI); each module has DC input & AC input Static Switch Not required; each module has own static switch Efficiency 94% AC-to-AC; 90% DC-to-AC (from 50% to 100% full load resistive) Waveform Pure sine wave Output Power Factor 0.8 Transfer time 0 ms Warranty 2 years Inverter Module AC Output Nominal Voltage (AC) 120 V Voltage Accuracy ± 2% Frequency 60 Hz, Same as input frequency Inverter frequency accuracy 0.03% THD (resistive load) <1.5% Transient load recovery time 0.4 ms Soft start time 20 s Max. crest factor at nominal power 3.5 Short circuit overload capacity 10 x In for 20 msec in EPC mode (AC input) Short term overload capacity 150% for 5 seconds Permanent overload capacity 110% 026-069-B0 Rev G 97 Inverter Module AC Input Nominal Voltage (AC) Voltage Range Input Power Factor Frequency Synchronization Range 120 V 90-140 (user adjustable) >99% 60 Hz 57-63 Hz Inverter Module DC Input Nominal Voltage Voltage Range (max) Max DC input current @ 48 Vdc Max DC input current @ 40 Vdc Voltage Ripple 48 Vdc 40-60 Vdc (user adjustable) 1400 A / 560 A / 750 A / 375 A 1700 A / 680 A / 900 A / 450 A <2 mV / <38 dbrnc Unified System Controller with SNMP Control & Monitoring Display Communication Ports Configure, control and monitor Inverter & Rectifier modules via Internet Explorer 7 and onwards LCD Touchscreen display (160 x 160 pixels) OK / Major / Minor 3-color LED display Web-based GUI via Ethernet RJ45 Ethernet Port RS232 Craft Port RS232 Modem Port (optional) Controller I/O Voltage Inputs Temperature Inputs Current Inputs Bivoltage Inputs Digital Inputs Relay Outputs 2 2 4 2 8 8 Environmental Specifications Operating Temperature (full load) Storage Temperature Relative Humidity Operating Altitude Thermal Dissipation Per Module -20° to 40°C (-4° to 104°F) -40° to 70°C (-40° to 158°F) Up to 95%, non-condensing Up to 1,500 m (4,900 ft) above sea level 437 BTU/hr in AC-to-AC mode & 758 BTU/hr in DC-to-AC mode Mechanical Specifications System Dimensions D x W x H (mm/in) System Weight -- without modules (kg/lb) Total Weight with modules (kg/lb) Inverter Module Dimensions D x W x H (mm/in) Inverter Module Weight (kg/lb) 680 mm x 600 mm x 2134 mm (26.75" x 23.6" x 84") 270 kg/595 lb 420 kg/925 lb 435 mm x 102 mm x 88.9 mm (17.13" x 4" x 3.5") 5 kg / 11 lb Agency Compliance CSA UL 98 C22.2 107.3-05 UL1778; Issue 4 (shelves and modules) 026-069-B0 Rev G 9.1 Specifications for 48/120 Inverter Module General specifications: EMC (immunity) EN 61000-4 EMC (emission) EN55022 (Class A), FCC 47 VFR Part 15, class A Safety IEC 60950, UL 1778 Issue 4 Cooling Forced Air MTBF 240000 hrs Efficiency (typical) Enhanced Power Conversion 94% On Line 89% AC Output Power Nominal 2500 VA Resistive Load 2000 W Overload Capacity (short) 150% @ 5 s Overload Capacity (permanent) 110% Nominal 48 V Range (V dc) 40 to 60 V Nominal Current (@40 Vdc) 56 A Max input current (5 s) 84 A Voltage Ripple 2 mV AC Input Specifications Nominal voltage (AC) 120 Vac Voltage range (AC) 90 to 140 Vac (adjustable) Power factor > 99% Frequency range (selectable) 60 Hz Frequency Tolerance ± 3 Hz (Adjustable) AC Output Nominal (AC)* 120 Vac Accuracy 2% Frequency 60 Hz (Same as input frequency in EPC mode) Frequency accuracy 0.03% Transient load recovery time 0.4 ms Transfer Performance Maximum Voltage interruption 0s Total Transient voltage duration 0s Environmental Operating Temperature: -20 to +40°C Storage Temperature: -40 to +70°C Humidity: Up to 95% non-condensing Elevation: <1500M Miscellaneous Dimensions: 2 RU H x 102 mm W x 435 mm D Weight: 5 kg (11 lb.) 026-069-B0 Rev G 99 9.2 Specifications for 48-1.8 kW Rectifier Rectifier Module Input Voltage, Output Current, Power AC Input Voltage Rectifier shelves Max # of Rectifier Modules Max DC output VA 120 2 8 192 Adc 120/240 Vac 2 8 300 Adc Current (Adc) Power Module Output Voltage 42 to 60 Vdc within rated limits Current 37.5 A maximum @ 48 Vdc (nominal input) ~24 A @ 48 Vdc (115 Vac input) Power 1800 W maximum @ nominal input ~1150 W @ 115 Vac input (de-rated linearly to 900 W @ 90 Vac) Static Load Regulation Dynamic Load Regulation Better than ±0.5% for any load change within rated limits Better than ±2% for 40% – 90% – 40% (50% load step) [output shall recover to static limits within 10 ms] Static Line Regulation Dynamic Line Regulation Better than ±0.1% for any change in input voltage within rated limits Better than ±1% for any change in input voltage within rated limits (output voltage shall recover to static limits within 2 ms) Hold-up Time: >10 ms Time Stability: =0.2% per year Temperature Stability: <170 ppm/°C over the operating range Heat Dissipation: <607 BTU per hour (per rectifier module) Electrical Noise: <32 dBrnC (voice band) <30 mVrms 10 kHz to 10 MHz (wideband) <150 mVp-p 10 kHz to 100 MHz <1 mV (psophometric) Acoustic Noise: EMI: 100 <60 dBa @ 1 m (3 ft.) @ 30°C (86°F) FCC Part 15, Class B: 026-069-B0 Rev G 10. Configuration Parameters The inverter settings have their own configuration file which is not part of the full site configuration file. The default configuration settings, described in the following sections, are presented in a logical manner, but in reality they are one contiguous file. All available parameters are described in this section, though not all are used in a basic installation. CAUTION! Configure parameters with care as mistakes will shut the system down with resulting power loss to the load. Modifying the configuration settings, using a text editor, can have dire consequences and should be undertaken by advanced users only. 10.1 Transferring Inverter Settings to Another System 1. To transfer inverter settings to another system, first save the inverter configuration file to a local disc (Main Menu > Inverters > Manage Config File). 2. Then browse to locate the file and upload it to the system at another site. 1 2 Figure 60 — Manage Config File window 10.2 Examples of Modifications to Configuration Parameters 10.2.1 Changing the Saturation Level Alarm The saturation alarm threshold is the level of load that generates an alarm indicating there is a risk of overload. This parameter takes into account the redundancy already defined. For example, if a system has 4 modules and 1 is redundant –> 80 % of 3 modules. 1. Save the inverter configuration file to a local disk (Main Menu > Inverters > Manage Config File). 2. Open the file with a text editor. 3. Scroll down to the saturation alarm threshold: ;556; ;Saturation alarm threshold; ;100; ;%; 4. Change the default to desired value in the range 80 to 100%. 5. Save the file to the local disk. 6. Upload to the inverter system. 7. Save inverter configuration file to the local disk with a different name than before. 026-069-B0 Rev G 101 10.2.2 Changing the Synchronization Tracking Speed Operation This parameter sets the speed with which the module tries to synchronize ACout. 1. Save the inverter configuration file to a local disk (Main Menu > Inverters > Manage Config File). 2. Open the file with a text editor. 3. Scroll down to Synchronization Tracking Speed ;100; ;Synchronization Tracking Speed; ;0; ;; 4. Change the default to one of the values from the following table: Value Tracking speed, Hz/sec -2 2 -1 1 0 0.5 +1 0.25 +2 0.1 5. Save the file to the local disk. 6. Upload to the inverter system. 7. Save the inverter configuration file to the local disk with a different name than before. 10.2.3 Changing the Walk-in Mode for Generator Operation Walk-in mode needs to be set if a generator is used in bypass mode. Walk in mode stops the oscillation that causes DC mode to activate. It allows a progressive comeback, slowly removing DC power while slowly increasing AC power. 1. Save the inverter configuration file to a local disk (Main Menu > Inverters > Manage Config File). 2. Open the file with a text editor. 3. Scroll down to Walk-in Mode ;62; ;Walk-in Mode (0 : No, 1 : Yes); ;0; ;; 4. Set the parameter to 1. 5. Save the file to the local disk. 6. Upload to the inverter system. 7. Save the inverter configuration file to the local disk with a different name than before. 102 026-069-B0 Rev G 10.3 Global Settings (ID 1 – 50) ;1; ;Number of inverter modules in phase 1; ;4; ;2; ;Number of inverter modules in phase 2; ;4; ;3; ;Number of inverter modules in phase 3; ;4; xx Number of inverters present (Here shown as 4 modules) in each phase xx Range: 0 - 32, Default: 1 xx min:0 1 32 xx (same value for ACin and ACout) ;21; ;Amount of redundancy in phase 1; ;1; ;22; ;Amount of redundancy in phase 2; ;1; ;23; ;Amount of redundancy in phase 3; ;1; ;40; ;41; xx Number of redundant inverters in each phase (Here shown as 1 module) xx Range: 0 - 32, Default: 0 xx When no inverter failed = no alarm xx When # of inverters failed ≤ redundancy (if different than 0) = Minor alarm (non urgent) xx When # of inverters failed > redundancy = Major alarm (urgent) ;Number of DC input groups; ;1; xx Number of DC input groups xx Range: 1 - 8, Default: 1 xx Allows inverters groups to be supplied from sets of batteries that are physically separated ;Number of AC input groups; xx Number of AC input groups xx Range: 1 - 4, Default: 1 026-069-B0 Rev G ;1; 103 10.4 Inverter Parameters (ID 51 – 550) ;60; ;61; ;62; ;70; ;71; ;75; ;Input Source (AC : 0, DC : 100); ;%; xx Record of priority source xx 0 –> Priority feed from ACin (converter AC/AC - AC/AC mode), Default setting xx 100 –> Priority feed from DC (converter DC/AC - On Line mode) ;ACin Mode (0 : normal, 1 : Safe); ;0; ;; xx Opens the ACin inlet relay xx 0 –> Normal running in AC/AC mode, Default setting xx 1 –> ACin inlet relay is open and so the system is insulated from the Mains ;Walk-in Mode (0 : No, 1 : Yes) ; ;1; ;; xx Walk-in mode allows a progressive comeback, slowly removing DC power while slowly increasing AC power xx 0 –> no progressive switching xx 1 –> progressive switching at 10% per second ;Number of phases ; ;3; ;; xx Record of number of phases : 1 (Single phase), 2 (2 phase), 3 (3 phase) xx Range: 0 - 8, Default: 1 ;Mode (0 star; 1 Delta) ; ;1; ;; xx Record of the protection for working on Delta load xx The mode, star or delta, allows configuration of automatic protection when the load is a delta connection (an engine for instance). This protects the load when 1 phase is lost. The protection consists of switching off all inverters. xx 0 –> no delta load protection, Default setting xx 1 –> Delta load protection available ;Free running Frequency xx 104 ;0; ; ;50.0; ;Hz; Record of the Inverters system frequency, 50 or 60 (default) 026-069-B0 Rev G ;80; ;81; ;82; ;Short Circuit Voltage Threshold; ;91; ;92; ;100; ;V; xx Minimum Voltage Threshold where module considers that outlet is in short circuit xx Adjustable from 20 to 100 Vac, default: 80 Vac ;Short Circuit Hold Time; ;60.0; ; sec; xx Time Duration when the module tries to eliminate the short-circuit existing on the outlet xx When this time expires and the voltage is less than the value on line 80, the module stops. xx Adjustable from 0.1 to 600 sec, default: 60 sec ;Booster 10 x Iin (0 : OFF, 1 : ON) ; xx ;90; ;80; ;1; ;; Turns off the Booster option which generates a current of 10 x Iin for 20ms in case of shortcircuit. ;Max current (as percentage of nominal current); xx Maximum Current that module can supply. xx Adjustable from 100 to 110 % for AIM2500 ;Max power (as percentage of of nominal power) ; ;110; ;%; ;110; ;%; xx Maximum Power that the module can supply. xx ALWAYS RECORD THE SAME VALUES for 90 and 91 ;Max Overload Duration); ;15; ;sec; xx Maximum Time Duration when module can run with overload. xx Adjustable from 0 to 15 sec, default: 15 sec ;Synchronization Tracking Speed; ;0; xx Speed with which the module tries to synchronize ACout xx Possible values: Speed 026-069-B0 Rev G Value Frequency (Hz/sec) very fast -2 2.5 fast -1 1.25 normal (default) 0 0.5 slow 1 0.25 very slow 2 0.1 ;; 105 ;101; ;102; ;Remote OFF disable ACin Power; xx 0 –> Normal mode, default xx 1 –> ACin power is de-activated ;Negative Power (0 : OFF, 1 : ON); xx ;103; ;0; ;; ;1; ;; ;0; ;; 1 –> ON, default ;External clock (0 : OFF, 1 : ON); xx 0 no in service protection xx 1 in service protection ;160; ;OUT 1 : phase shift (-180 to 360, default 0); ;0; ;deg; ;161; ;OUT 1 : Nominal Output Voltage (100 to 140); ;120; ;V; xx Record of the phase shift and nominal Outlet voltage. xx Phase shift range: -180 to 360, default: 0 deg xx Nominal output voltage range: 100 to 140, default: 120 V ;170; ;OUT 2 : phase shift; ;120; ;deg; ;171; ;OUT 2 : Nominal Output Voltage; ;120; ;V; xx Record the phase shift and the nominal Outlet voltage. xx Range and defaults same as OUT 1 ;180; ;OUT 3 : phase shift; ;240; ;deg; ;181; ;OUT 3 : Nominal Output Voltage; ;120; ;V; xx Record the phase shift and the nominal Outlet voltage. xx Range and defaults same as OUT 1 Parameters for DC Groups ;260; 106 ;DC 1 : Vdc_in Low Start; ;49; ;V; xx Low DC Voltage – a higher value causes the converter DC/AC to re-start xx Range: 39 to 61, default: 49 V 026-069-B0 Rev G ;261; ;262; ;263; ;264; ;265; ;DC 1 : Vdc_in Low Transfer; ;42; ;V; xx Low DC Voltage – a lower value transfers the load from DC/AC to AC/AC converter. xx Range: 39 to 61, default: 42 V ;DC 1 : Vdc_in Low Stop; ;42; ;V; xx Low DC Voltage – a lower value causes the DC/AC converter to stop. xx Range: 39 to 61, default: 42 V ;DC 1 : Vdc_in High Start; ;58; ;V; xx High DC voltage – a higher value re-starts the DC/AC converter xx Range: 39 to 61, default: 58 V ;DC 1 : Vdc_in High Transfer; ;61; ;V; xx High DC Voltage – a higher value transfers the load from DC/AC to AC/AC converter xx Range: 39 to 61, default: 61 V ;DC 1 : Vdc_in High Stop; ;61; ;V; xx High DC voltage – a higher value stops the DC/AC converter. xx Range: 39 to 61, default: 61 V ;270; ;DC 2 : Vdc_in Low Start; ;49; ;V; ;271; ;DC 2 : Vdc_in Low Transfer; ;42; ;V; ;272; ;DC 2 : Vdc_in Low Stop; ;42; ;V; ;273; ;DC 2 : Vdc_in High Start; ;58; ;V; ;274; ;DC 2 : Vdc_in High Transfer; ;61; ;V; ;275; ;DC 2 : Vdc_in High Stop; ;61; ;V; xx The same as Group DC 1 ;280; ;DC 3 : Vdc_in Low Start; ;49; ;V; ;281; ;DC 3 : Vdc_in Low Transfer; ;42; ;V; ;282; ;DC 3 : Vdc_in Low Stop; ;42; ;V; ;283; ;DC 3 : Vdc_in High Start; ;58; ;V; ;284; ;DC 3 : Vdc_in High Transfer; ;61; ;V; ;285; ;DC 3 : Vdc_in High Stop; ;61; ;V; xx 026-069-B0 Rev G The same as Group DC 1 107 ;290; ;DC 4 : Vdc_in Low Start; ;49; ;V; ;291; ;DC 4 : Vdc_in Low Transfer; ;42; ;V; ;292; ;DC 4 : Vdc_in Low Stop; ;42; ;V; ;293; ;DC 4 : Vdc_in High Start; ;58; ;V; ;294; ;DC 4 : Vdc_in High Transfer; ;61; ;V; ;295; ;DC 4 : Vdc_in High Stop; ;61; ;V; xx The same as Group DC 1 ;300; ;DC 5 : Vdc_in Low Start; ;49; ;V; ;301; ;DC 5 : Vdc_in Low Transfer; ;42; ;V; ;302; ;DC 5 : Vdc_in Low Stop; ;42; ;V; ;303; ;DC 5 : Vdc_in High Start; ;58; ;V; ;304; ;DC 5 : Vdc_in High Transfer; ;61; ;V; ;305; ;DC 5 : Vdc_in High Stop; ;61; ;V; xx The same as Group DC 1 Synchronization with ACin source ;370; ;AC : Fac_in Low Start; xx ;371; ;372; ;375; ;Hz; ;62.7; ;Hz; Above this value and less than parameter 375, the inverters will try to synchronize with the ACin frequency ;AC : Fac_in High Stop; xx ;57.0; Below this value the inverters will stop trying to synchronize with the ACin frequency ;AC : Fac_in High Start; xx ;Hz; Below this value and above parameter 371, the inverters will try to synchronize with the ACin frequency ;AC : Fac_in Low Stop; xx ; 57.3; ;63; ;Hz; Above this value, the inverters will trying stop to synchronize with ACin Parameters for AC Groups ;380; 108 ;AC 1 : Vac_in Low Start; ;91.5; ;V; xx ACin Voltage where a higher value causes the converter AC/AC to start xx Range: 83 to 143, default: 91.5 V 026-069-B0 Rev G ;381; ;382; ;383; ;AC 1 : Vac_in Low Transfer; ACin Voltage where a lower value transfers the load from the AC/AC converter to the DC/ AC converter xx Range: 80 to 143, default: 81.5 V ;AC 1 : Vac_in Low Stop; ; 81.5; ;V; xx ACin Voltage where a lower value causes the AC/AC converter to stop xx It is possible to step down to 150 Vac. In this case, the AC/DC converter runs at a lower power. The DC/DC converter supplies the rest (ONLY if DC is available, if not, there is a derating) ;AC 1 : Vac_in High Start; ;V; ;143; ;V; ACin Voltage where a higher value transfers the load of the charge from the converter AC/ AC to the DC/AC converter ;AC 1 : Vac_in High Stop; xx ; 140; ACin Voltage where a lower value causes the AC/AC converter to re-start ;AC 1 : Vac_in High Transfer; xx ;385; ;V; xx xx ;384; ;81.5; ;143; ;V; ACin Voltage where a higher value causes the AC/AC converter to stop ;390; ;AC 2 : Vac_in Low Start; ;91.5 ;V; ;391; ;AC 2 : Vac_in Low Transfer; ;81.5; ;V; ;392; ;AC 2 : Vac_in Low Stop; ;81.5; ;V; ;393; ;AC 2 : Vac_in High Start; ;140; ;V; ;394; ;AC 2 : Vac_in High Transfer; ;143; ;V; ;395; ;AC 2 : Vac_in High Stop; ;143; ;V; xx The same for Group AC 1 ;400; ;AC 3 : Vac_in Low Start; ;91.5 ;V; ;401; ;AC 3 : Vac_in Low Transfer; ;81.5; ;V; ;402; ;AC 3 : Vac_in Low Stop; ;81.5; ;V; ;403; ;AC 3 : Vac_in High Start; ;140; ;V; ;404; ;AC 3 : Vac_in High Transfer; ;143; ;V; ;405; ;AC 3 : Vac_in High Stop; ;143; ;V; xx 026-069-B0 Rev G The same for Group AC 1 109 10.5 Alarm Settings (ID 551-950) Global Parameters (ID: 551-600) ;551; ;553;; ;Alarm on prog. relay (255 is NU); Replace 255 by the Alarm Code you wish for programming the relay user selectable 3 xx See previous codes for the T2S and Enclosed list for the TSI. ;MAJ relay temporization; ;558; ;570; ;60; ;sec; Temporization of Urgent alarm (from 0 to 65536 sec) ;MIN relay temporization; xx ;556; ;; xx xx ;554; ;255; ;30; ;sec; High DC voltage – a higher value re-starts the DC/AC converter ;Saturation alarm threshold; ;100; ;%; xx Level of load that generates an alarm indicating there is a risk of overload. xx This parameter takes into account the redundancy defined previously xx I.e. P ex : system with 4 modules with 1 redundant –> 80 % of 3 modules ;ACin is present (1:true 0:false); ;1; ;; xx Allow to inhibit the alarm when ACin not Present xx 1 –> gives alarm when main Network is not Present xx 0 –> no alarm when main Network is not Present (AC in not available or Regular inverter) ;Log near. full thresh. (100-200); xx ;180; ;; Number of messages in the Logfile. It is from the Logfile that alarm is generated when the Logfile is about completed. Configuration of types of Alarms - Alarm Type (ID : 601 - 900) : Minor(1) - Major(2) - No Alarm(0) ;828; xx Choice for type of alarms as detailed hereafter xx No Alarm = 0 / Minor = 1 / Major = 2 ;227.DIG INP1 FAILURE; xx 110 ;0; ;; Type of alarms for Digital inlet 1 (Inlet to be configured by user) 026-069-B0 Rev G ;829; ;228.DIG INP2 FAILURE; xx ;830; ;831; ;832; ;833; ;834; ;835; ;; ;1; ;2; xx Type of alarm when Main source is lost xx In AIM2500 mode : Main source is ACin = Network xx In ON LINE mode : Main source is DCin = battery ;233.SEC SOURCE LOST; ;; ;1; ;; ;; xx Activates when Secondary source is lost xx In AC/AC mode : Secondary Source is DCin = battery xx In ON LINE mode : Secondary Source is ACin = Network ;234.T2S BUS FAIL; 026-069-B0 Rev G ;; ;2; ;; ;0; ;; Activates when the T2S is not running ;242.LOG NEARLY FULL; xx ;2; Activates when the T2S is lost ;235.T2S FAILURE; xx ;843; ;2; Type of alarms when the threshold of pre-alarm “overload” is exceeded ;232.MAIN SOURCE LOST; xx ;836; ;; Activates when more than # of modules of redundancy are lost ;231.SYS SATURATED; xx ;1; Activates when redundancy is lost ;230.REDUND + 1 LOST; xx ;; Type of alarms for Digital inlet 2 (Inlet to be configured by user) ;229.REDUNDANCY LOST; xx ;0; Activates when the logfile is nearly full 111 ;845; ;244. Check log file; xx ;846; ;847; 112 ;1; ;; Type of alarm when the DC voltage for DC GROUP 1 is lower or equal than “Vdc in Low transfer” and mains is not present. ;246 Shutdown DC 2 -> DC 8; xx ;; Type of alarm when abnormal conditions are present as, transient communication problem, plug/ unplug inverter. When time is not reached for activating the output relay alarm. ;245. Shutdown DC 1; xx ;1; ;1; ;; Type of alarm when the DC voltage for DC GROUP 2 up DC GROUP 8 are lower or equal than “Vdc in Low transfer” and mains is not present. 026-069-B0 Rev G 11. Certification About CSA and NRTL CSA (Canadian Standards Association also known as CSA International) was established in 1919 as an independent testing laboratory in Canada. CSA received its recognition as an NRTL (Nationally Recognized Testing Laboratory) in 1992 from OSHA (Occupational Safety and Health Administration) in the United States of America (Docket No. NRTL-2-92). This was expanded and renewed in 1997, 1999, and 2001. The specific notifications were posted on OSHA’s official website as follows: • Federal Register #: 59:40602 - 40609 [08/09/1994] • Federal Register #: 64:60240 - 60241 [11/04/1999] • Federal Register #: 66:35271 - 35278 [07/03/2001] When these marks appear with the indicator “C and US” or “NRTL/C” it means that the product is certified for both the US and Canadian markets, to the applicable US and Canadian standards. (1) Alpha rectifier and power system products, bearing the aforementioned CSA marks, are certified to CSA C22.2 No. 950 and UL 1950, or CSA/UL 60950. Alpha UPS products, bearing the aforementioned CSA marks, are certified to CSA C22.2 No. 107.3 and UL 1778. As part of the reciprocal, US/Canada agreement regarding testing laboratories, the Standards Council of Canada (Canada’s national accreditation body) granted Underwriters Laboratories (UL) authority to certify products for sale in Canada. (2) Only Underwriters Laboratories may grant a licence for the use of this mark, which indicates compliance with both Canadian and US requirements. (3) NRTLs capabilities NRTLs are third party organizations recognized by OSHA, US Department of Labor, under the NRTL program. The testing and certifications are based on product safety standards developed by US based standards developing organizations and are often issued by the American National Standards Institute (ANSI). (4) The NRTL determines that a product meets the requirements of an appropriate consensus-based product safety standard either by successfully testing the product itself, or by verifying that a contract laboratory has done so, and the NRTL certifies that the product meets the requirements of the product safety standard. (4) Governance of NRTL The NRTL Program is both national and international in scope with foreign labs permitted. (1) www.csagroup.org (2) www.scc.ca (3) www.ulc.ca (4) www.osha.gov 026-069-B0 Rev G 113 12. Warranty Alpha Technologies Ltd. warrants all equipment manufactured by it to be free from defects in parts and labor, for a period of two years from the date of shipment from the factory. The warranty provides for repairing, replacing or issuing credit (at Alpha’s discretion) for any equipment manufactured by it and returned by the customer to the factory or other authorized location during the warranty period. There are limitations to this warranty coverage. The warranty does not provide to the customer or other parties any remedies other than the above. It does not provide coverage for any loss of profits, loss of use, costs for removal or installation of defective equipment, damages or consequential damages based upon equipment failure during or after the warranty period. No other obligations are expressed or implied. Warranty also does not cover damage or equipment failure due to cause(s) external to the unit including, but not limited to, environmental conditions, water damage, power surges or any other external influence. The customer is responsible for all shipping and handling charges. Where products are covered under warranty Alpha will pay the cost of shipping the repaired or replacement unit back to the customer. 114 026-069-B0 Rev G Alpha Technologies Ltd. 7700 Riverfront Gate Burnaby, BC V5J 5M4 Canada Tel: +1 604 436 5900 Fax: +1 604 436 1233 Toll Free: +1 800 667 8743 Alpha Energy, Alpha Technologies Inc. 3767 Alpha Way Bellingham, WA 98226 United States Tel: +1 360 647 2360 Fax: +1 360 671 4936 Alpha Industrial Power Inc. 1075 Satellite Blvd NW, Suite 400 Suwanee, GA 30024 United States Tel: +1 678 475 3995 Fax: +1 678 584 9259 Outback Power 5917 195th St NE, Arlington, WA 98223 United States Tel: +1 360 435 6030 Fax: +1 360 435 6019 Alpha Technologies GmbH Hansastrasse 8 D-91126 Schwabach, Germany Tel: +49 9122 79889 0 Fax: +49 9122 79889 21 Alpha Technologies S.A. 131 Boulevard de l’Europe 1301 Wavre Belgium Tel: +32 10 438 510 Fax: +32 10 438 213 Alpha Technologies Europe Ltd. Twyford House Thorley Bishop’s Stortford Hertfordshire, CM22 7PA United Kingdom Tel: +44 1279 501110 Fax: +44 1279 659870 Alphatec Ltd. 339 St. Andrews St. Suite 101 Andrea Chambers P.O. Box 56468 3307 Limassol, Cyprus Tel: +357 25 375 675 Fax: +357 25 359 595 Alpha TEK ooo Khokhlovskiy Pereulok 16 Stroenie 1, Office 403 Moscow, 109028 Russia Tel: +7 495 916 1854 Fax: +7 495 916 1349 Alpha Technologies Suite 1903, 191F., Tower 1, 33 Canton Rd. Tsim Sha Tsui China, Hong Kong City, Kowloon, Hong Kong Tel: +852 2736 8663 Fax: +852 2199 7988 Alpha Innovations Brasil Rua Manuel Augusto de Alvarenga, 155 São Paulo, SP - Brasil Tel: +55 11 2476 0150 Fax: +55 11 2476 0150 Alphatec Baltic S. Konarskio Street 49-201 Vilnius, LT-03123 Lithuania Tel: +370 5 210 5291 Fax: +370 5 210 5292 For technical support, contact Alpha Technologies: Canada and USA: 1-888-462-7487 International: +1-604-436-5547 Visit us at www.alpha.ca Due to continuing product development, Alpha Technologies reserves the right to change specifications without notice. Copyright © 2013 Alpha Technologies. All Rights Reserved. Alpha® is a registered trademark of Alpha Technologies.