Download flare swg usa

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

CoRoT wikipedia , lookup

Perseus (constellation) wikipedia , lookup

Wilkinson Microwave Anisotropy Probe wikipedia , lookup

Physical cosmology wikipedia , lookup

James Webb Space Telescope wikipedia , lookup

Leibniz Institute for Astrophysics Potsdam wikipedia , lookup

Aquarius (constellation) wikipedia , lookup

Non-standard cosmology wikipedia , lookup

Gamma-ray burst wikipedia , lookup

Dark matter wikipedia , lookup

Ursa Minor wikipedia , lookup

Space Interferometry Mission wikipedia , lookup

Malmquist bias wikipedia , lookup

Serpens wikipedia , lookup

Megamaser wikipedia , lookup

Ursa Major wikipedia , lookup

Andromeda Galaxy wikipedia , lookup

Timeline of astronomy wikipedia , lookup

Corvus (constellation) wikipedia , lookup

Observable universe wikipedia , lookup

Stellar kinematics wikipedia , lookup

International Ultraviolet Explorer wikipedia , lookup

Quasar wikipedia , lookup

Cosmic distance ladder wikipedia , lookup

R136a1 wikipedia , lookup

Spitzer Space Telescope wikipedia , lookup

Modified Newtonian dynamics wikipedia , lookup

Messier 87 wikipedia , lookup

H II region wikipedia , lookup

Redshift wikipedia , lookup

Pea galaxy wikipedia , lookup

Lambda-CDM model wikipedia , lookup

Structure formation wikipedia , lookup

Observational astronomy wikipedia , lookup

Galaxy Zoo wikipedia , lookup

Star formation wikipedia , lookup

Hubble Deep Field wikipedia , lookup

Transcript
US Contributions to FLARE
With an update on
SPHEREx: Spectro-PHotometer for the Extragalactic structure, Reionization
and ices Explorer
Asantha Cooray
Asantha Cooray, UC Irvine
FLARE March 2016
Outline
• CIP/SPHEREx
• SPHERx -> FLARE is a natural transition
• Proposed US FLARE team
• US contributions to FLARE - sciences and hardware
Asantha Cooray, UC Irvine
FLARE March 2016
SPHEREx:AnAll-SkySpectralSurvey
DesignedtoExplore
▪TheOriginoftheUniverse
▪TheOriginandHistoryofGalaxies
▪TheOriginofWaterinPlanetarySystems
TheFirstAll-Sky
Near-IRSpectralSurvey
ARichLegacyArchiveforthe
AstronomyCommunitywith100s
ofMillionsofStarsandGalaxies
Low-RiskImplementation
▪SingleObservingMode
▪NoMovingParts
▪LargeTechnical&ScientificMargins
SPHEREx:SimpleInstrument,LargeMargins
Deployed
thermal
shields
Wide-field
telescope
20 cm eff.
aperture
High-throughput spectrometer
uses a linear-variable filter in front
of each detector array
Passive
cooling
system
185 cm
BCP 100
spacecraft
Parameter
TelescopeEffectiveAperture
PixelSize
FieldofView
Spectrometer
ResolvingPowerand
WavelengthCoverage
Arrays
PointSourceSensitivity
(MEVPerformance)
Cooling
2.5µmArrayand
OpticsTemperature(Req’t)
5.3µmArrayTemperature
(Req’t)
PayloadMass
PayloadPower
Value
20cm
6.2"x6.2"
2x(3.5°x7.0°);dichroic
Linear-VariableFilters
R=41.5λ=0.75-4.1µm
R=150λ=4.1-4.8µm
2xHawaii-2RG2.5µm
2xHawaii-2RG5.3µm
18.5ABmag(5σ)with
300%margintoreq’t
All-Passive
80Kwith700%margin
ontotalheatload
55Kwith450%margin
ontotalheatload
68.1kg(CBE+31%Ctg)
27.8W(CBE+30%Ctg)
Deployed
Solar panels
Parameter
Spacecraft
ScienceData
Downlink
PointingStability
Pointing
Control
PointingAgility
ObservatoryMass
Observatory
Power
SolarArrayPower
Output(EOL)
Performance
BallBCP100
Margin
N/A
73Gb/day
97%
2.1"(1σ)over200s
43%
22.7”(1σ)
164%
70ºin116s(largeslews)
8.8’in6s(smallsteps)
173.6kg(MEV)
29%
233%
53%
171.8W(MEV)
36%
234W
N/A
Margins:
Thermal Science
Deep fields
(x30 deeper; 200 sq. degrees)
Point source detections
Asantha Cooray, UC Irvine
FLARE March 2016
Two100sq.degreeregions
Atthepoleswithare~30xdeeper.
Anopportunityforuniquescience
SPHEREx Deep Fields
Asantha Cooray, UC Irvine
FLARE March 2016
SPHERExCreatesan
All-SkyLegacyArchive
NotableFeaturesoftheSPHERExAll-Sky
Survey
• HighS/Nspectrumforevery2MASS
source
• SoliddetectionoffaintestWISEsources
Scienceapplications
• Low-zgalaxyluminosityfunctions
• Searchforz>6reionizationquasars
• HighEWemissionlinegalaxies
• Galaxyclusters(determineredshifts
~90%-100%oftheeROSITAclusters)
• ApplicationswithSZandCMBmaps
• …….
Asantha Cooray, UC Irvine
Object
Detected
galaxies
Galaxies
σ(z)/(1+z)
<0.03
#Sources
LegacyScience
120million
Galaxiesσ(z)/
(1+z)
<0.003
9.8million
Study(H,CO,O,S,H2O)lineand
PAHemissionbygalaxytype.
ExploregalaxyandAGNlife
Simulationbased
cycle
onCOSMOSand
Pan-STARRS
CrosscheckofEuclidphoto-z.
Measuredynamicsofgroups
andmapfilaments.
QSOs
>1.5million
UnderstandQSOlifecycle,
environment,andtaxonomy
QSOs
atz>7
0-300
Rossetal.(2013)
DetermineifearlyQSOsexist.
Follow-upspectro-scopyprobes plussimulations
EORthroughLyαforest
1.4billion
Propertiesofdistantandheavily
obscuredgalaxies
Reference
Clusterswith≥ 25,000
5members
RedshiftsforalleRositaclusters. Geachetal.,
Viralmassesandmerger
2011,SDSScounts
dynamics
Mainsequence >100million
stars
Testuniformityofstellarmass
functionwithinourGalaxyas
inputtoextragalacticstudies
2MASScatalogs
Mass-losing,
dustforming
stars
Over10,000of SpectraofMsupergiants,OH/IR Astro-physical
stars,Carbonstars.Stellar
Quantities,4th
alltypes
atmospheres,dustreturnrates, edition[ed.
Browndwarfs
andcompositionofdust
A.Cox]p.527
>400,incl.>40
oftypesTand
Y
Atmosphericstructureand
composition;searchforhazes.
Informsstudiesofgiant
exoplanets
dwarfarchives.or
gandJ.D.
Kirkpatrick,priv.
comm.
Starswithhot
dust
>1000
Discoverraredustclouds
Kennedy&Wyatt
producedbycataclysmicevents (2013)
likethecollisionwhichproduced
theEarth’smoon
DiffuseISM
Mapofthe
Galaxy
Studydiffuseemissionfrom
GLIMPSEsurvey
interstellarcloudsandnebulae; (Churchwell
(H,CO,S,H2OandPAHemission) etal.2009)
FLARE March 2016
SPHEREx Team
ScienceTeam
Name
Jamie Bock
Institution
Caltech/JPL
Role Responsibility
PI Principal investigator, overall
management
Matt Ashby
CfA
Co-I Pipeline development
Peter Capak
IPAC
Co-I Galaxy spectral fitting modules
Asantha Cooray
UC Irvine
Co-I Galaxy Formation L4 lead
Olivier Doré
JPL/Caltech
PS Project scientist;
Inflationary Cosmology L4 lead
Chris Hirata
OSU
Co-I Inflation and Cosmology studies
Woong-Seob Jeong
KASI
Co-I KASI PI
Phil Korngut
Caltech
Co-I Deputy instrument scientist
Dae-Hee Lee
KASI
Co-I Ground test equipment
Gary Melnick
CfA
Co-I Galactic Ice L4 lead
Roger Smith
Caltech
Co-I Detector array development
Yong-Seon Song
KASI
Co-I Cosmology interpretation
Stephen Unwin
JPL
Co-I Galactic ice science
Michael Werner
JPL
Co-I Legacy survey science
Michael Zemcov
Caltech
Co-I Instrument scientist
* Funding Source: N=NASA C=Contributed
Collaborators
Name
Institution
Experience
Roland de Putter
JPL
US PI of Herschel/SPIRE
and Planck./HFI;CIBER
PI; BICEP2/Keck
Co-PI
Tim Eifler
JPL
Spitzer/IRAC
teamFlagey
Nicolas
IfA
PI of COSMOS
survey
Yan Gong
UC Irvine
CIBER, Spitzer,
Herschel
analysis Stanford
Elisabeth
Krause
Planck, WMAP scientist, Euclid Science Team
Daniel Masters
Caltech
Phil Mauskopf
ASU
Euclid Science Team
Bertrand Menneson JPL
NISS PI, MIRIS
Hien Nguyen
CIBER instrument
development JPL
KarinMIRIS
Öbergdevelopment CfA
CIBER, NISS,
CMU
SWAS PI Anthony Pullen
Raccanelli
H2RGs forAlvise
diverse
astronomy apps JHU
PI of KASIVolker
participation
Tolls in DESI CfA
SIM and TPF-I
DPS;
ExEP Dep ProgArgonne
Scientist
Salman
Habib
Spitzer PSKatrin Heitmann
Argonne
CIBER and
QuADViero
instruments
Marco
Stanford
CompetedinDec2014SMEX;SelectedbyNASAforaPhase-AstudyinJuly2015.
PhaseAreportdueinJuly2016.
PhaseAdown-selection~December2016
N/C* Re
L4
N Cosm
Synergie
N Ice sp
L4
N Galax
L4
N Bispec
L4
N
Spectral
Cluster c
N
Ice
C catalo
Instrumen
N
L4
C Ice sc
L4
N Galax
Cosmic
m
N
C Ice pip
L4
N
Galaxy
c
N
Galaxy
c
N
Intensity
High-ThroughputLVFSpectrometer
LinearVariableFilter
FocalPlaneAssembly
MethaneonPluto
1.0
0.8
I/F
0.6
0.4
0.2
0.0
InfraredSpectralImage
1.61.82.02.22.4
Wavelength(µm)
LVFsusedonISOCAM,HST-WFPC2,
NewHorizonsLEISA,&OSIRIX-Rex(2016launch)
Spectraobtainedbysteppingsourceoverthe
FOVinmultipleimages:nomovingparts
SPHERExPassiveCoolingSystem
HowDoesLVFSpectroscopyCompare?
Low-Conductance
PhotonShields
Triple
V-Groove
Cooler
CoolingDesignforSPHERExinLow-EarthOrbit
JPLPassiveCoolingDesignforPlanckatL2
PassiveCoolingExamples
Mission
Orbit
Temp
COBE
LEO
45 K
Sun-Sync
DIRBE post-cryo
WISE
LEO SS
Mirror post-cryo
Spitzer
Earth-trail 27.5 K
Mirror post-cryo
5.3um-FPA
11.4
2.2b
8.9
0.3
Planck
L2
Telescope
2.5um-FPA
83.1
2.2b
70.6
SIDECAR
828
400
NA*
74 K
36 K
Notes
Volz et al. 1992
Planck et al. 2011
PassiveCoolingTemperaturesandPowerMargins
Thermal
Stage
CBE Heat Load [mW]
Total
Dissip Condu
ated
cted
Radiated
Reqt
[K]
Predicted Temp
Max Heat Load on Stage
Temp
[K]
Margin
[K]
Totala
[mW]
Margina
[mW]
< 55
39.5
15.5
62.2
50.8 (450%)
10.3
< 80
46.2
33.8
666
583 (700%)
428
< 200
152
48
3950
3120 (380%)
Wide-FieldTelescope
Three-mirrorastigmat
Spotdiagrams
HowDoesLVFSpectroscopyCompare?
Parameter
Value
EffectiveAperture
20cm
PhysicalAperture
33cm
FOV
3.5°x7°
Focalratio
f/3
Pixelsize
6.2″
λ/dat1µm
1.0″
Demoofflightfree-formmirrorgiving44nmrmsvs.80nmreq’t
Pointsourcesensitivity
dependsonhowmany
pixels(Neff)areco-added
tomeasureasource
δFαNeff-1/2
Neffincludeseverything:diffraction,aberrations,tolerancingerrors,
pointingjitter,sourcepositionsoverthearray
Hawaii-2RGDetectorArrays
HowDoesLVFSpectroscopyCompare?
SPHERExOn-BoardSlopeFitting
‘Off-the-Shelf’ArraySpecifications
Parameter
2.5µmArrays
5µmArrays
Spec
Typical
Spec
Typical
CDSReadNoise
18e-
10.5e-
15e-
10.5e-
DetectorQE
70%
75%
75%
75%
DarkCurrent
0.05e-/s
0.01e-/s
0.05e-/s
0.01e-/s
DarkCurrent(e-/s)
Teledyne H2RG arrays
- H1RGs flown on HST (1.7um),
OCO (2.5um), WISE (5um) (TRL 9)
- H2RGs and SIDECAR for JWST (TRL 6)
- H2RGs wide use in ground-based astronomy
SPHEREx
Photo-I
Bands1-3
SPHEREx
Photo-I
Band4
55K
80K
Beleticetal.2008
WhyStudyIces?
•Gas and dust in molecular clouds
are the reservoirs for new stars and
planets
- In molecular clouds, water is
100-1000x more abundant in ice
than in gas - Herschel observations of the TW
Hydrae disk imply the presence of
1000s of Earth oceans in ice
(Hogerheijde et al. 2011)
- Models suggest water and
biogenic molecules reside in ice in
the disk mid-plane and beyond the
snow line
•Ideal λs to study ices: 2.5 - 5 µm
- Includes spectral features from
H2O, CO and CO2
- Plus chemically important minor
constituents NH3, CH3OH, X-CN,
and 13CO2
Schematic of a protoplanetary disk
ISO absorption spectrum
SPHERExGalacticIceSurvey
SPHEREx will be a game changer to
resolve long-standing questions about
the amount and evolution of key
biogenic molecules through all phases
of star and planet formation
Ices in each Phase of Star Formation
• SPHEREx increases the number of
ice spectra from ~200 to >> 20,000
• Band 4 spectral resolving power λ/Δλ
= 150 chosen to isolate the
absorption from each ice species
The SPHEREx ice catalog will:
• Contain molecular clouds, YSOs,
and 1000s of protoplanetary disks
• Determine the role of environment (T,
n, radiation field, cosmic rays) in
forming ices • Determine if ices in disks come from
the parent cloud or are reformed
• Measure the abundance of water and
biogenic ices in disks that is
available to new planets
One Million Targets with |b| < 1°
RedshiftswithSPHEREx
Weextractthespectraofknownsources
usingthefull-skycatalogsfromWISE
andPanSTARRS/DES.
Blendingandconfusioneasilycontrolled.
Wecomparethisspectratoatemplate
library(robustforlowredshiftsources):
Foreachgalaxy:redshift&type
Multipletypestestgalaxybiaseffects
The1.6μmbumpisawellknown
universalphotometricindicator
(Simpson&Eisenhardt99)
Wesimulatedthisprocessusingthe
COSMOSdatasetusingthesame
processasEuclid/WFIRST(Capaketal.).
Thepoweroflow-resolutionspectroscopy
hasbeendemonstratedwithPRIMUS
(Cool++14),COSMOS(Ilbert++09),NMBS
(vanDokkum++09).
WISE
PanSTARRS
SPHERExLargeVolumeGalaxySurvey
SPHERExSurveysMaximumCosmicVolume
CatalogSplitintoRedshiftAccuracyBins
σz/(1+z)
SPHERExLarge-VolumeRedshiftCatalog
• Largesteffectivevolumeofanysurvey,nearcosmiclimit
• Excelsatz<1,complementsdarkenergymissions(Euclid,WFIRST)targetingz~2
• SPHEREx+EuclidmeasuresgravitationallensingandcalibratesEuclidphoto-zs
SurveyDesignedforTwoTestsofNon-Gaussianity
• Largescalepowerfrompowerspectrum:large#oflow-accuracyredshifts
• Modulationoffine-scalepowerfrombispectrum:fewerhigh-accuracyredshifts
SPHERExTestsInflationaryNon-Gaussianity
•
•
•
•
Non-Gaussianitydistinguishesbetweenmulti-andsingle-fieldmodels
ProjectedSPHERExsensitivityisδfNL<1(2σ)
-Twoindependenttestsviapowerspectrumandbispectrum
Competitivelytestsrunningofthespectralindex
SPHERExlow-redshiftcatalogiscomplementaryfordarkenergy
SPHERExMeasuresCosmicLightProduction
TwoWaystoMeasureCosmicLightProduction
WhatConstitutesCosmicLightProduction?
Moseley & Zemcov
Science 2014
13+ billion years of galaxy
collisions and mergers
Diffuse emission between
galaxies from tidally
stripped stars
Inflation
fraction of a
trillionth
of a second
Cosmic microwave background
~380,000 years
First stars & galaxies
~400 million years
Present universe
~13.8 billion years
1)IndividualGalaxies&Redshifts
Largetelescopeforpointsourcesensitivity
2)Large-ScalePatternsintheBackground
Smalltelescopewithfidelityondegreescales
→theamplitudeoflarge-scale(clustering)
fluctuationsproportionaltototallightproduction
1)PhotonProductioninGalaxies
Nucleosynthesis&blackholes,peaksatz~2
2)FirstStarsandGalaxies
EpochofReionizationz>6
3)Intra-HaloLight
largetelescopeforpointsourcesensitivity
4)Surprises?
E.g.Lightfromparticledecay
HST
JWST
•Galaxycountsmissfaintsourcesthat
maydominatethereionizationbudget.
•Currentgalaxycountsathigh-zarenot
enoughtosustainionization.
•Wemustbemissingalargefractionof
theionizingflux.
•IMstudiesaresensitivetothetotal
luminosityemittedbyallgalaxies->
IntensityMappingoffersanadvantage.
A near-IR application
Asantha Cooray, UC Irvine
FLARE March 2016
0.6 microns
0.75 microns
0.85 microns
1.25 microns
1.6 microns
Hubble CANDELS fluctuations
Mitchell-Wynne et al. 2015 Nature Communications
Asantha Cooray, UC Irvine
FLARE March 2016
Reionization signal in IR fluctuations
Mitchell-Wynne et al. 2015 Nature Communications
Asantha Cooray, UC Irvine
FLARE March 2016
Galaxy Evolution
6>z
Formation of First Stars:
15 > z > 6
Dark Ages:
15 > z
• SPHEREx maps spectra lines over the cosmic history
• Many lines detected as bright individual lines, rest blended
with noise and background
Spectral Line Intensity Mapping
Asantha Cooray, UC Irvine
FLARE March 2016
Line intensity power
spectra at z~2
Measured with
all pixels in the 3d
spectral cube
•Emissionlinesencode
clusteringsignalateach
redshiftovercosmichistory
•Amplitudegiveslinelight
production
Spectral Line Intensity Mapping
Asantha Cooray, UC Irvine
FLARE March 2016
Multiplelinestracestarformation
history
-HighS/NinHαforz<3;OIII/Hβforz<2
-LyaprobesEoRmodelsforz>6
-HαandLyαcrossoverregion5<z<6
Crosscorrelationsallowawaytoreduce
foregroundcontamination(whencomparedto
theautopowerspectra)
Asantha Cooray, UC Irvine
FLARE March 2016
SPHERExwillmapLyαemission
duringreionization.
Hα
Wemayseez~6Lyαfluctuations
Lyα
Atz>6SPHERExalonewillnot
havesensitivityforadetection
ofthepowerspectrum[for
Hopkins&BeacomSFRD].
SPHEREx Spectral Line Intensity Mapping
Asantha Cooray, UC Irvine
FLARE March 2016
Outline
• SPHEREx -> FLARE
• US FLARE team
• US contributions to FLARE - sciences and hardware
Asantha Cooray, UC Irvine
FLARE March 2016
Merger of CfA/WISH and the JPL/Caltech/UCI/Texas/Rochester groups.
Two US names to the FLARE Science Board/builder management group:
Asantha Cooray
Giovanni Fazio
Matt Ashby (CfA; IRAC/Spitzer/SPHEREx; high-z galaxies)
Peter Capak (IPAC; COSMOS, Euclid - photo-z’s)
Ranga Chary (IPAC; Planck, Euclid - SED modeling)
Olivier Dore (JPL; Planck, SPHEREx; JPL Project Scientist for FLARE)
Steven Finkelstein (Texas; Hubble/CANDELS; high-z galaxies)
Joseph Hora (CfA; high-z galaxies)
Gary Melnick (SPHEREx; Galactic sciences)
Bahram Mobasher (Hubble; high-z galaxies/SEDs; PopIII stars)
Hooshang Nayyeri (UCI; high-z galaxies)
Jason Rhodes (US PI for Euclid; WFIRST Deputy Project Scientist)
Howard Smith (CfA; Galactic sciences)
Dan Stern (Euclid, NuSTAR - AGN sciences, high-z drop-outs)
Volker Tolls (CfA; Galactic sciences)
Steve Wilner (CfA; Galactic sciences)
Michael Zemcov (Rochester Inst of Tech; detectors/fluctuations)
Proposed US FLARE Team
Asantha Cooray, UC Irvine
FLARE March 2016
CfAStarFormationProjects
FLAREcanreach~8magdeeperthanIRACsurveysat3.5μm,enablingthemeasurementoftheNIR
SEDsofyoung(<104yrold)protostellarsources.YSOsdowntoabout0.2M shouldbeaccessibleout
to>~1kpc.
Clustersofembeddedprotostarsinsidedarkcoresalongthe
Manyprotostarsareclusteredwithinasingle“core”astypically
Afilamentseenat70-160-250
filamentasseenwithSpitzer(24-8-3.5)
definedbythelargebeamofHerschelobservations.
Á
CfAStarFormationProjects
FittingSEDS:Thelong-λfluxesfromcooldusthaveambiguousSEDfits,whilehigherspatial
resolution,near-IRfluxesfromclusteredsourcesareoftenverymuchfainter.FLAREcanreach~8
magdeeperthanIRACsurveysat3.5μm,enablingthemeasurementoftheNIRSEDsofyoung(<104
yrold)protostellarsources.
CfAcurrentlyisextendingtheRobitailleYSOgridcode
withtheabilitytoobtainmost-likelyprotostellarcluster
properties,includinglow-massstars,fromspatially
IRAClimit YSO
confusedSEDS(1-500μm)obtainedwithindifferentsize
beams.
stellar
FLARElimit
ThemodeledSEDofprotostarG030.894+0.138inan
infrareddarkcloud(solidline;Robitaillemodel.)
FLAREspectroscopywillprobearichenvironmentoftheseYSOs.
32
33
ExpectedNumberofGalaxiesDetectedbythe
WISHUltra-DeepSurvery
34
GALAXY PHYSICS
WIDE-FIELD SURVEYS
USTHROUGH
FLARE Team
St even Finkels t ein - The University of Texas at Austin
STATISTICAL METHODS
Increasing Stellar Baryon Fractions at z > 4
Stellar Baryon Fraction
0.30
GALAXY PHYSICS
Finkelstein+15a
IO
N
AX
0.15
0.10
Finkelstein+15b
4.0
IZ
I
AT
O
YE
VO
LU
T
IO
4.5
5.0
N
50
LF+fesc=0.1
QSO Lyα Forest
Madau99 + C(z)
Madau99 + C=3
SF, Paardekooper, Behroozi+in
prep
Finkelstein+in
prep
48
The large red circles denote our stepwise maximum likelihood luminosity function,
4
6
8
10
t-fit values given by the inset text. We do not
use data below
the determined
50%
Redshift
of our last data point denotes the 50% completeness limit in the HUDF. The dashed
luminosity functions from the literature, as indicated in the legends.
7.0
ure 3 we also provide the abundance-matching-der
magnitudes in each of ou
Finkelstein masses
15c at all observed
Unresolved
bins. We note that in
particular, our derived halo
-2.0
3.2.1. Comparison to Previous Results
LF+fesc(Mh)
6.5
Time Since Big Bang (Gyr)
10
5
3
2 The
1.5
1Although
0.8here we are
0.6specifically
0.5 concerned with
N and 14 galaxies at z = 4, 5, 6, and 7, respectively.
me0.0
masses of bright galaxies, in the right-hand pane
dian stellar mass is
slightly lower than in our fiducial sample, log(M∗ /M⊙ ) = 9.8, 9.8, 9.7 and 9.9 and z = 4, 5, 6
and 7, respectively.
The amplitude of the redshift derivative
-0.5
of the stellar baryon fraction is slightly lower, dSBF/dz =
0.0215 ± 0.0066, yet the evolution is still significant at the
3.2σ level. We conclude
-1.0 that there is significant evolution in
the stellar baryon fraction in that it decreases with decreasing
redshift, and that this evolution is stable against several definitions of both the
median stellar mass and the stellar mass
-1.5
uncertainty.
51
5.5
6.0
Redshift
F IG . 4.— The stellar baryon fraction (SBF) in bright (MUV = −21) galaxies from z = 4 to 7. We define the SBF as the stellar to halo mass ratio in
cosmic baryon mass fraction Ωb /Ωm . We find that the SBF increases with increasing redshift, which may be responsible for the apparent lack of evo
∗ observed over this redshift range.
characteristic magnitude MUV
log Cosmic SFRD (M yr-1 Mpc-3)
RE
log Nion (s-1 Mpc-3)
0.20
0.00
52
Asantha Cooray, UC Irvine
d(SBF)/dz ∝(0.031±0.009)
0.05
GA
L
49
0.25
Consensus
log(Mh /M⊙ ) = 11.35 atGalaxies
z = 7 is ostensibely consiste
recent clustering-based measure of log(Mh /M⊙ ) ≈ 1
Barone-Nugent et al. (2014). However, their halo m
mate was for galaxies with MUV < −19.4, a sample
a lower average luminosity than our sample, and thu
Tot
halo mass is expected.
Our z = 4 results are consiste
al
RD
lier clustering-basedSFestimates
by Lee et al. (2006)
ens
z = 5 and z = 6, our derived
halo
ity masses are somewh
than the clustering-based estimates from Lee et al. (2
Overzier et al. (2006), respectively, likely due to t
luminosities considered in those works (MUV < −2
respectively). Although there are minor differences
Consensus
couraging that two independent methods, abundanc
ing and clustering, tentatively agree on the halo m
MD+14
mates at such high redshifts, though certainly the c
Oesch+14
based can be made more robust at z > 6.
Behroozi et al. (2013b) recently
studied the evolution of
Bouwens+15
the SMHM relation, by modeling all available observational
-2.5
Finkelstein+15
constraints, including luminosity functions, stellar mass functions, and SFRs, and exploring McLeod+15
the galaxy evolution parameter space with an MCMC search.Oesch+13/14
They found that the SMHM
-3.0 constant halo
curve peaks at a roughly
mass of log(Mh /M⊙ ) =
11.7 at z = 0–4. Specifically, MD+14
at z = 4, they found a peak
SBF at a halo mass
of log(Mh /M⊙ ) ≈ 12.0, consistent with
-3.5
the typical halo mass we derive for our bright z = 4 galax3.2.2.
0 Then they went
2 on to find that
4 the
6
8 UV Luminosity
10 Scatter
ies, log(Mh /M⊙ ) = 11.9.
peak of the SMHM relation at z ≥ 5 occurs at a halo mass
The halo mass estimates in § 3.1 did not explici
Redshift
steadily decreasing with redshift, log(Mh /M⊙ ) = 11.9, 11.6,
the effect of the scatter in UV luminosity at a fi
and 11.4 at z = 5, 6, and 7, respectively. This is very similar
mass. The estimates compared the number density in
∗
to what we find for the typical halo masses of MUV
galaxwith MUV < −21 to the number density in halos wi
FLARE March 2016
Extendto8-10microns?
• Therest-frameopticalisthemostimportantregimeto
studyreionizationepochgalaxiesthroughLya,HeII,
Hbeta,Halpha,[OII]and[OIII].
• Providesaccuratemeasuresofionizationparameter,
dustextinction,metallicityandstellarmass
• MostsensitivetoquantitieslikeIMFevolution,stellar
rotation,binaryfraction,star-formationmechanismetc.
(SeeEkstrometal.,Levesqueetal.)
• Spitzerhaspioneeredthewaybydetectingnebular
emissionfromz~6andz~5galaxiesinabroadband!The
resultanthighEWarguesinfavorofahighionization
parameter(Shimetal.2011,Charyetal.2005)
TheSurprisingExcessinaBroadband
VLT/CFHT
Hubble
Spitzer
Halpha nebular emission: seen in 70% of 3.8<z<5 galaxies in Spitzer data
Chary et al. 2005
Shim, RC, et al. 2011
37
PotentialGoalsofFLARE
• UseLy-atogetopticaldepthevolutionwithztoz~15[butnote
thatevensmallN_HcouldsuppressallLya];
• ObtainaBPTdiagramforz>6galaxies;
• Understandwhichmechanism(binaries,IMFormetallicity)is
responsiblefortheunusualobservedpropertiesof
reionizationepochgalaxies;
• Obtainanaccuratecensusofionizingphotonproduction
(usingHbeta/OIII)modulatedoverlargescalestructureto
understandifreionizationwastop-down(i.e.dominatedby
big-halos)orbottom-up;inconjunctionwith21cm
experiments.
• Assesstheimpactoffeedbackmechanismsondifferences
betweentheUVluminosityfunctionandtheopticalluminosity
function–strongfeedbackcauseslargedivergenceinfaint-end
slopes(e.g.Finlator,Daveetal.2012)