* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Raman spectroscopy of nanostructures and single molecules
Rotational–vibrational spectroscopy wikipedia , lookup
Phase-contrast X-ray imaging wikipedia , lookup
Rotational spectroscopy wikipedia , lookup
Ultrafast laser spectroscopy wikipedia , lookup
Nuclear magnetic resonance spectroscopy wikipedia , lookup
Atomic absorption spectroscopy wikipedia , lookup
Two-dimensional nuclear magnetic resonance spectroscopy wikipedia , lookup
Mössbauer spectroscopy wikipedia , lookup
Chemical imaging wikipedia , lookup
Ultraviolet–visible spectroscopy wikipedia , lookup
Vibrational analysis with scanning probe microscopy wikipedia , lookup
Magnetic circular dichroism wikipedia , lookup
Astronomical spectroscopy wikipedia , lookup
X-ray fluorescence wikipedia , lookup
Raman spectroscopy of nanostructures and single molecules Alejandro Fainstein Laboratorio de Propiedades Opticas Centro Atómico Bariloche & Instituto Balseiro Inelastic (Raman) scattering of light is a powerful technique for the characterization of excitations in solids and molecules. In particular, vibrational spectroscopy provides a very specific and sensitive tool applicable to the study of fundamental phenomena and for sensing. This technique can be used for the study of nanostructures and single molecules, but in these cases amplification strategies are required. In this talk I will present a tutorial on Raman scattering in solids and molecules, and I will describe the different techniques used for the enhancement of the Raman efficiency. These include the use of electronic resonances (resonant Raman scattering, RRS), of plasmon resonances in metallic nanostructures (surface enhanced Raman scattering, SERS), and of photon confinement in microcavities (double optical resonant Raman scattering). These techniques will be illustrated with examples of current research on molecular and solid nanostructures, and on single molecules, performed at our laboratory and by other groups. References: M. Cardona, in Light Scattering in Solids II, edited by M. Cardona and G. Güntherodt (Springer, Berlin, 1982). B. Jusserand, and M. Cardona, in Light Scattering in Solids V, edited by M. Cardona and G. Güntherodt, (Springer, Heidelberg, 1989). A. Otto, in Light Scattering in Solids IV, edited by M. Cardona and G. Güntherodt (Springer, Berlin, 1984). A. Fainstein and B. Jusserand, in Light Scattering in Solids IX, edited by M. Cardona and R. Merlin (Springer, Berlin, 2006). Magnetic properties of the matter studied by X-rays magnetic circular dichroism Flavio García Laboratorio Nacional de Luz Sincrotrón Campinas, S. P., Brasil Two fascinating subjects will be put together in theses lectures: the magnetism of the matter and some of the X-rays absorption spectroscopy experimental techniques available in synchrotrons radiation sources, namely the X-rays magnetic circular dichroism (XMCD) spectroscopy. The first of these has captured the imagination of humankind for 3000 years; while the XMCD is a relatively new technique, which allows the quantitative measurement of magnetic moments. The main strengths of this technique are the independent determination of the spin and orbital magnetic moments and the elemental specificity. Since of Dispersive X-ray Absorption Spectroscopy (DXAS) beam line opening for external users, in the first semester of 2003, it has been used for scientists from several fields of chemical and physics disciplines, namely magnetism, superconductivity, catalysis and electrical-chemistries. The great advantage of this system, compared to the conventional XAS beamlines, is that it allows measurements of a complete XAS spectrum without any mechanical motion, in a few milliseconds. This is specially suited for in situ XANES and XMCD studies, which require good accuracy and high stability. Fast kinetics, like those occurring in a catalytic or electrochemical reaction, can be tracked by in-situ experiments. The beamline opens the way to the high-pressure community which are used to diamond anvil cells in their studies. The scope of these lectures will be a succinct presentation of the magnetism properties of the magnetic materials and some interesting magnetic phenomena; also, it will present the background of the XMCD as well as some examples that will display the strength of XMCD method, and show that XMCD spectroscopy is an extremely powerful tool in the analyzing complex magnetic systems. Finally, it will present an overview of the research carried at DXAS beamline, with especial attention to the high pressure opportunities. My talks will be organized as followed: 1) Background of the magnetic materials; 2) Some interesting magnetic systems; 3) Conventional magnetometric techniques; 4) Background of the synchrotron radiation and XAS; 5) introduction on the XMCD; 6) experimental details of the DXAS beamline and others XMCD facilities at LNLS; 7) Some examples of the XMCD experiments; 8) The others research possibilities at DXAS beamline (kinetics XAS and in situ studies under hydrostatic pressure). References F. Garcia, PhD thesis, Centro Brasileiro de Pesquisas Físicas, 2000. A.P.Guimarães, Magnetism and Magnetic Resonance in Solids, Wiley Interscience Publication. N. M Souza-Neto, Journal of Synchrotron Radiation 12, 168, 2005). J. C. Cezar, PhD thesis, UNICAMP, 2002. Métodos de Cristalografía y Difracción de Rayos X Iris Torriani Laboratorio Nacional de Luz Sincrotrón, Campinas, SP Brasil. Laboratorio de Cristalografía Aplicada e Raios X, Instituto de Física, Universidade Estadual de Campinas, SP, Brasil. Objetivos Dar una sólida base sobre los aspectos teóricos-experimentales de los métodos de cristalografía y la difracción de rayos X y sus aplicaciones. Las clases estarán orientadas a la difractometría de rayos X por las técnicas de polvo y de bajo ángulo (SAXS), así como al refinamiento de estructuras cristalinas. Se desarrollará el fundamento teórico de la difractometría de polvo y de bajo ángulo. Contenido * Generación de rayos X. Aspectos históricos. Fuentes convencionales. Radiación sincrotrón. * Nociones de cristalografía. Celda unitaria, simetrías, sistemas cristalinos. * Dispersión de rayos X. Dispersión a bajos ángulos (SAXS). Difracción por materiales ordenados y cristalinos (DRX). * Medidas difractométricas. Tratamiento de datos. Identificación de fases cristalinas. * Refinamiento de estructuras cristalinas. Método de Rietveld. Aplicación del método en la obtención de parámetros estructurales. * Aplicaciones en biología: Determinación de estructuras de macromoléculas. Proteínas: estructura atómica y estructura en solución. State-of-the-art of x-ray fluorescence with synchrotron radiation Jorge Héctor Sánchez Facultad de Matemática Astronomía y Física Universidad Nacional de Córdoba Ciudad Universitaria, Córdoba 5000, Argentina It is well known that the use of synchrotron radiation in trace analysis by x-ray fluorescence (SRXRF) allows to reduce detection limits and to improve sensitivities1,2. The intrinsic characteristics of synchrotron radiation (high intensity, polarization, natural collimation, etc.) and the construction of dedicated sources of synchrotron light make possible to improve detection limits for trace elements in several orders of magnitude. Besides, it permits to implement spectrochemical analysis with spatial resolution on the micrometer scale. As could be expected, this kind of experiment using conventional sources is limited to detecting only major components (a few x-ray microbeam systems working with capillaries and conventional excitation have reported studies of trace elements). Grodzins3 compared intrinsic sensitivities of XRF microprobes induced by electrons, protons and photons and concluded that the photon microprobe presents better sensitivities for high-intensity emission sources. In general, the SRXRF technique is especially adequate for nondestructive trace analysis on the spatial range of 5 to 100 µm. Many situations can be resolved efficiently with collimating systems, energy-dispersive setups and white beam. The use of a monochromator and/or wavelength-dispersive systems permits to optimize the irradiation conditions, to perform a selective analysis and to extend the dynamic range of the technique, improving sensitivities and detection limits for low-Z elements. Nevertheless, these devices are expensive and produce an important loss of intensity. In 1972 Yoneda and Horiuchi[4] proposed an innovative excitation method for x-ray fluorescence (XRF) experiments based on external total reflection of the incident x-ray beam (TXRF). In this condition the background of the measured spectra can be drastically reduced and, accordingly detection limits are improved reaching the ng/g level almost without difficulty. During the mid-70s and the beginning of the 80s the first applications of TXRF and the development of the first spectrometers using the total reflection technique were reported[5-7]. Today it is a well-established technique and several papers on the subject are published each year. The use of synchrotron radiation in combination with total reflection permits to obtain detection limits as low as 107 at/cm² and is the most accepted technique for wafers analysis of micro and nano technologies. In 1983 Becker et al.[8] demonstrated that XRF analysis can be attained in grazing emission (GE) conditions. The Reciprocity Theorem of Helmholtz[9] predicts that the GE setup reproduces the same conditions as total reflection in grazing incidence (GI) and thus the same DL. Experimentally, GE conditions are obtained in a different way than GI conditions; hence the GEXRF technique represents an important progress in the field for surface experiments with synchrotron radiation and total reflection. References C. J. Sparks Jr. In Synchrotron Radiation Research, eds. H. Winick and S. Doniach, Plenum, New York, 1980 B. M. Gordon, K.W. Jones, Nucl. Instrum. Methods B10/11, 293 (1985) L. Grodzins, Neurotoxicol. 4, 23 (1983) 1. Y. Yoneda and T. Horiuchi, Rev. Sci. Instrum. 42, 1069 (1971) 2. H. Aiginger and P. Wobrauschek, Nucl. Instrum. Methods 114, 157 (1974) 3. P. Wobrauschek and H. Aiginger, Anal. Chem. 47, 852 (1975) 4. J. Knoth and H. Schwenke, Fresenius Z. Anal. Chem. 301, 7 (1980) 5. R. S. Becker, J. A. Golovchenko and J. R. Patel, Phys. Rev. Lett. 50, 153 (1983) 6. M. Born and E. Wolf, in “Principles of Optics”, Ch. 8 p. 381, Pergamon Press, New York, (1980). Introducción a la Física del Sólido Oscar E. Piro Departamento de Física, Facultad de Ciencias Exactas Universidad Nacional de La Plata PROGRAMA BÁSICO 1) Teoría de Drude de los metales. 2) Teoría de Sommerfeld de los metales. 3) Propiedades de estructuras periódicas. Redes directas y recíprocas. Celdas de Bravais y de Wigner-Seitz. 4) Movimiento de electrones en potenciales periódicos. Teoría de bandas. Teorema de Bloch. Zonas de Brillouin. Electrones en potenciales periódicos débiles. Aproximación de ondas planas. Difracción de electrones de valencia. Superficie de Fermi. Estructura de bandas de los niveles electrónicos en sólidos; representación en esquemas reducido, extendido y periódico. Clasificación de sólidos en conductores, semiconductores y aisladores. 5) Método de ligadura fuerte (‘Tight binding’). Bibliografía sugerida 1. 2. 3. 4. 5. 6. N. W. Ashcroft & N. D. Mermin: “Solid State Physics”. Holt, Rinehart & Winston, Philadelphia. A. S. Davidov: “Teoría de Sólidos”. Mir, Moscú. C. Kittel: “Introduction to Solid State Physics”. John Wiley, New York, 4th Edition. C. Kittel: “Quantum Theory of Solids”. John Wiley, New York. J. M. Ziman: “Principles of the Theory of Solids”. Cambridge University Press. J. M. Ziman: “Electrons and Phonons”. Clarendon Press, Oxford. LNLS: Infra-estrutura e Oportunidades para Pesquisa com Luz Síncrotron Gustavo Azevedo Laboratorio Nacional de Luz Sincrotrón Campinas, S. P., Brasil O Laboratório Nacional de Luz Síncrotron (LNLS) localizado em Campinas, na região sudeste do Brasil, possui diversas instalações abertas que oferecem a cientistas do Brasil, e de toda a América Latina, condições de realizar pesquisas com nível de competitividade mundial. A principal instalação do LNLS é uma fonte de luz síncrotron de terceira geração, que vem sendo utilizada desde 1997 por pesquisadores de diversas áreas, incluindo físicos, químicos, biólogos, geólogos e engenheiros. O anel de armazenamento do LNLS tem capacidade para acomodar 24 linhas de luz. Atualmente, 12 linhas de luz encontram-se em operação e outras 4 encontram-se em fase final de projeto ou comissionamento. Estas linhas disponibilizam luz síncrotron cobrindo desde a região visível do espectro eletromagnético até a região dos raios x duros e são dedicadas a diversas técnicas de caracterização, tais como XRD, SAXS, XPS, XAFS (XANES + EXAFS) e cristalografia de proteínas. Neste seminário, farei uma breve descrição da fonte de luz síncrotron brasileira, ressaltando suas principais características. Além disso discutiremos as linhas disponíveis no LNLS e instrumentação associada. As potencialidades de utilização dessas instalações na caracterização de materiais serão discutidas. Introdução à Espectroscopia de Estrutura Fina de Absorção de Raios-X Gustavo Azevedo Laboratorio Nacional de Luz Sincrotrón Campinas, S. P., Brasil Neste seminário, será apresentada uma introdução à Espectroscopia de estrutura fina de absorção de raios-X - XAFS (X-ray Absorption Fine Structure). Esta técnica explora a dependência do coeficiente de absorção de raios-x de um material quando a energia dos fótons é suficiente para remover um elétron de um nível interno de caroço de um átomo presente no material. XAFS é sensível ao estado químico e à estrutura local em torno do átomo ionizado (absorvedor). Em particular, XAFS é sensível às distâncias interatômicas, números de coordenação e identidade química dos átomos nas vizinhanças do absorvedor. Além disso, permite sondar a estrutura eletrônica do sistema (densidade local de estados desocupados). Abordaremos inicialmente a região de EXAFS (“Extended X-ray Absorption Fine Structure”), que é a estrutura fina do espectro que se manifesta na forma de oscilações do coeficiente de absorção entre 50 e 2000 eV acima da borda. Discutiremos os processos físicos que originam as oscilações de EXAFS e como a análise da freqüência e amplitude das oscilações permite obter informação sobre a ordem de curto alcance em torno do átomo absorvedor. A seguir, abordaremos a região de XANES (“X-ray Absorption Near Edge Structure”), que corresponde à estrutura fina do espectro de absorção nos 200 eV em torno da borda de absorção. Como veremos, esta região contém informação a respeito da estrutura eletrônica e da simetria de coordenação em torno do átomo absorvedor. Discutiremos brevemente alguns desenvolvimentos teóricos recentes que permitem a modelagem ab-initio do espectro de XANES. Finalmente, algumas aplicações, potencialidades e limitações da técnica XAS serão discutidas. Vibrational spectroscopy in nanostructures Volia Lemos Crivellenti Departamento de Fisica Universidade Federal do Ceará Caixa Postal 6030, Fortaleza,CE, Brazil The research field of nano structures has boomed in recent years due to the increased demand from the portable electronic market, drug delivery, gas sensors, rechargeable batteries, among others.1,2 One of the current techniques for the characterization of particles with dimensions in the nanoscale domain is Raman spectroscopy. A number of systems have been studied using this technique, such as carbon nanotubes and fullerenes. Analysis of the carbon nanotubes Raman spectrum allows determining the diameter of nanotubes, chirality and resonance conditions. Functionalization or chemical modifications are straightforwardly reveled using this spectroscopy. Alkalimetal dopants, for instance, leads to a shift of the Fermi level, 3-6 and to a conductivity enhancement of the SWCNTs.7-10 Under pressure, the spectrum gives information on the state of deformation of the isolated tube or the bundle.11-15 The scope of this course is the study of carbon nanotubes physical and vibrarional properties. It will be organized as follows: 1) Background of basic definitions of lattice and other concepts needed to the understanding of the subject. 2) The structure of single-wall carbon nanotubes, SWNTs. 3) The electronic structure of grapheme and SWNTs. 4) The status of current research in the field of Raman spectroscopy of SWNTs. 5) A review of pressure effects in SWNTs: experiments and calculations. References 1 M. S. Dresselhaus, G. G. Samsonidze, S. G. Chou, G. Dresselhaus, J. Jiang, R. Saito, and A. Jori, Phys. E 29, 443 (2005). M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza, G. G. Samsonidze, and R. Saito, J. NanoSci. Nanotech. 3, 19 (2003). 2 B. Vigolo, P. Poulin, M. Lucas, P. Launois, and P. Bernier, Appl. Phys. Lett. 81, 1210 (2002). 3 X. Liu, T. Pichler, M. Knupfer, et al., Phys. Rev. B 67, 125403 (2003). 4 S. Suzuki, C. Bower, Y. Watanabe, et al., Appl. Phys. Lett. 76, 4007 (2000). 5 S. Suzuki, F. Maeda, Y. Watanabe, et al., Phys. Rev. B 67, 115418 (2003). 6 H. Rauf, T. Pichler, M. Knupfer, et al., Phys. Rev. Lett. 93, 096805 (2004). R.S. Lee, H.J. Kim, J.E. Fischer, et al., Nature 388, 255 (1997). 8 A. M. Rao, P. C. Eklund, S. Bandow, et al., Nature 388, 257 (1997). 9 N. Bendiab, L. Spina, A. Zahab, et al., Phys. Rev. B 63, 153407 (2001). 10 S. B. Fagan, S. Guerini, J. Mendes, et al., Microelectronics Journal 36, 499 (2005). 11 U. D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rinzler, R. E. Smalley, and P. C. Eklund, Phys. Rev. B 59, 10928 (1999). 12 U.D. Venkateswaran, E.A. Brandsen, U. Schlecht, A.M. Rao, E. Richter, I. Loa, K. Syanssen, and P.C. Eklund, Phys. Stat. Solidi (b) 223, 225 (2001). 13 U. D. Venkateswaran, D. L. Masica, G. U. Sumanasekera, C. A. Furtado, U. J. Kim, and P. C. Eklund, Phys. Rev. B 68, 241406 (2003). 14 M. J. Peters, L. E. McNeil, J. P. Lu, and D. Kahn, Phys. Rev. B 61, 5939 (2000). 15 P. V. Teredesai, A. K. Sood, D. V. S. Muthu, R. Sen, A. Govindaraj, and C. N. R. Rao, Chem. Phys. Lett. 319, 296 (2000). 7 Infrared Spectroscopy Néstor E. Massa Laboratorio Nacional de Investigación y Servicios en Espectroscopía OpticaCEQUINOR Universidad Nacional de La Plata C.C. 962, 1900 La Plata, Argentina In this tutorial we will review scientific topics involving a most important analytical tool in which virtually any sample, crystals, liquids, solutions, pastes, powders, films, fibres, gases and surfaces can be studied using current easily available accessories. Infrared spectroscopy, spanning from 20 to 13000 cm-1, is a comprehensive tool for the quantitative study of vibrational modes in terms of changes in electric dipoles associated with vibrations and rotations. In addition, the electronic structure, as in highly correlated materials from regular transition metal oxides to high Tc cuprates, may also be probed through the interplay of external variables such as quasihydrostatic pressure, temperature, and applied magnetic fields. This yields information of instabilities of great interest to solid state research. Infrared spectra are based on Fourier spectroscopy that is a powerful technique applied to transmission as well as reflectivity measurements and built on the Michelson Interferometer. An interferogram is created that it is Fourier transform to obtain transmission (absorption) as function of frequency. Then the optical properties are deduced by Kramers-Kronig integration or a dielectric simulation (using damped oscillators and plasma) of the reflectivity spectra. This allows the knowledge of the dielectric function real and imaginary parts yielding a complete low energy characterization We will also see more recent applications on biology where now the samples of interest are biomolecules, very complex systems such as protein, nucleic acid, carbohydrate, lipid, or biomembrane structure where spectroscopic IRmicroscopy helps bridging data from X-ray cristallography that otherwise would be intractable. Infrared Spectroscopy: Fundamentals and Applications B. Stuart 2004, http://media.wiley.com/product_data/excerpt/86/04708542/0470854286.pdf#s earch=%22introduction%20%2B%20%20infrared%22 M. S. Dresselhaus. Optical Properties of Solids http://web.mit.edu/afs/athena/course/6/6.732/www/opt.pdf F. Wooten, Optical Properties of Solids, Academic Press, 1972. See for example, D. Nauman on Infrared Spectroscopy in Microbiology, Encyclopedia of Analytical Chemistry, R. A. Meyers (Ed.) , John Wiley and Sons Ltd , Chichester, (2000). Pp. 102-131. L. Miller. Biomicrospectroscopy file:///C:/Documents%20and%20Settings/Administrador/Configuraci%F3n%2 0local/Archivos%20temporales%20de%20Internet/Content.IE5/KRBV2K19/4 31,1,Diapositiva 1 Project for an infrared-beamline at the Swiss Light Source http://www.solidphys.ethz.ch/spectro/DOC/SLS/slsreport.pdf#search=%22Pro ject%20for%20an%20infraredbeamline%20at%20the%20Swiss%20Light%20Source%22