* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download NorwayWN.5
Survey
Document related concepts
Transcript
Threshold anomaly E.P. Wigner, Phys. Rev. 73, 1002 (1948), the Wigner cusp G. Breit, Phys. Rev. 107, 923 (1957) A.I. Baz’, JETP 33, 923 (1957) A.I. Baz', Ya.B. Zel'dovich, and A.M. Perelomov, Scattering Reactions and Decay in Nonrelativistic Quantum Mechanics, Nauka 1966 A.M. Lane, Phys. Lett. 32B, 159 (1970) S.N. Abramovich, B.Ya. Guzhovskii, and L.M. Lazarev, Part. and Nucl. 23, 305 (1992). • The threshold is a branching point. • The threshold effects originate in conservation of the flux. • If a new channel opens, a redistribution of the flux in other open channels appears, i.e. a modification of their reaction cross-sections. • The shape of the cusp depends strongly on the orbital angular momentum. Y(b,a)X X(a,b)Y a+X a+X a1+X1 at Q1 a2+X2 at Q2 an+Xn at Qn Threshold anomaly (cont.) Studied experimentally and theoretically in various areas of physics: pion-nucleus scattering R.K. Adair, Phys. Rev. 111, 632 (1958) A. Starostin et al., Phys. Rev. C 72, 015205 (2005) electron-molecule scattering W. Domcke, J. Phys. B 14, 4889 (1981) electron-atom scattering K.F. Scheibner et al., Phys. Rev. A 35, 4869 (1987) ultracold atom-diatom scattering R.C. Forrey et al., Phys. Rev. A 58, R2645 (1998) Low-energy nuclear physics •charge-exchange reactions •neutron elastic scattering •deuteron stripping The presence of cusp anomaly could provide structural information about reaction products. This is of particular interest for neutron-rich nuclei C.F. Moore et al., Phys. Rev. Lett. 17, 926 (1966) N. Michel et al. PRC 75, 0311301(R) (2007) WS potential depth decreased to bind 7He. Monopole SGI strength varied 5He+n 6He Overlap integral, basis independent! 6He+n 7He Anomalies appear at calculated thresholds (many-body Smatrix unitary) Scattering continuum essential see also Nucl. Phys. A 794, 29 (2007) • The non-resonant continuum is important for the spectroscopy of weakly bound nuclei (energy shifts of excited states, additional binding,…) • SFs, cross sections, etc., exhibit a non-perturbative and non-analytic behavior (cusp effects) close to the particle-emission thresholds. These anomalies strongly depend on orbital angular momentum • Microscopic CSM (GSM) fully accounts for channel coupling Timofeyuk, Blokhintsev, Tostevin, Phys. Rev. C68, 021601 (2003) Non-Borromean two-neutron halos Helium resonances in the Coupled Cluster approach and Berggren basis Complex coupled-cluster approach to an ab-initio description of open quantum systems, G. Hagen, D. J. Dean, M. Hjorth-Jensen and T. Papenbrock, Phys. Lett. B656, 169 (2007) Real Energy Treatment Hilbert space formulation : Shell Model Embedded in the Continuum (1999) Open space involves particles in the scattering continuum Closed space: SM space Q0 A Q1 A 1 1 A Q2 A 2 2 Q 1 i i 0 HQ1Q2 ... ... HQ0Q0 HQ1Q1 HQ0Q0 HQeff0Q0 E H eff Q0Q0 E SM j SM i H Q 0Q 0 HQ0Q0 HQ0Q2 HQ1Q1 HQ2Q2 c c i i j ' c c P dE j i ' E E 2 c1 c1 c SM j real SM i HQ0Q1 HQ2Q2 imaginary coupling between closed and open space. It vanishes if E<Ec From M. Ploszajczak Continuum Shell Model He isotopes •Cross section and structure within the same formalism •Reaction l=1 polarized elastic channel References [1] A. Volya and V. Zelevinsky, Phys. Rev. Lett 94 (2005) 052501. [2] A. Volya and V. Zelevinsky, Phys. Rev. C 67 (2003) 54322 Hagen et al, ORNL/UTK Ab initio: Reactions Nollett et al, ANL Coupled Clusters CC GFMC Quaglioni & Navratil, LLNL 2008 No Core Shell Model + Resonating Group Method 11Be: Phys. Rev. C 79, 044606 (2009) Description of Proton Emitters ln 2 / T1/ 2 Ze / Rc Qp,nucl 1/ 2 2 Gjl 2m / Unbound states Discrete (bound) states F 2 Rout Ri n exp2Gjl dr V jl r VCoulr Vl r Qp, nucl 0 daughter proton p 2T 2 i f quasistationary 1d3/2 orbital Qp=1139 keV log10|(r)| -2 -4 147Tm -6 r2 -8 -1 0 rB 0 20 40 60 80 10 0 12 0 14 0 16 0 18 0 r (fm) 147Tm log10 t1/2 (sec) 10 146Er+p exp 0h11/2 1d3/2 2s1/2 5 0 -5 -1 0 Qp window 0.5 1.0 1.5 Qp (MeV) 2.0 2.5 Fine structure in proton emission studied at HRIBF 7 ms 1/2+ 3 ms 4 ms 7/2- 145Tm 141Ho ~2% 2+ 202 ORNL 2001 ORNL 2005 ~1% 480 146Tm 20,15% ORNL 2003 T.N. Ginter et al., PRC 68, 034330, 2003 M.N. Tantawy et al., PRC 73, 024316, 2006 2+ 0 keV 0+ M. Karny et al., PRL 90, 012502, 2003 K. Rykaczewski et al., AIP 638, 149, 2002 M. Karny et al., PRL 2006 (5-) 330 144Er 0 keV 0+ 140Dy 70 ms 10% ORNL 2000 0.9% 198 ms (10+) 11/2- 1.9 ms (10+) nh11/2 x 2+ 250 nh11/2 180 ns1/2 x 0 keV ns1/2 145Er 2+ 144Tm ORNL 2004 ~30% 270+x nh11/2 x 2+ nh11/2 x 0 keV ns1/2 143Er R. Grzywacz et al., EPJ A25, s01, 145, 2005 Some References Particle-core vibration coupling C.N.Davids, H.Esbensen, Phys.Rev. C69, 034314 (2004) M.Karny et al., Phys.Rev.Lett. 90, 012502 (2003) K.Hagino, Phys.Rev. C64, 041304 (2001) C.N.Davids, H.Esbensen, Phys.Rev. C64, 034317 (2001) H. Esbensen and C.N. Davids, Phys. Rev. C64, 034317 (2001) Deformed proton emitters, coupled-channels, R-matrix B.Barmore et al., Phys.Rev. C62, 054315 (2000) H.Esbensen, C.N.Davids, Phys.Rev. C63, 014315 (2001) W.Krolas et al., Phys.Rev. C65, 031303 (2002) A.T. Kruppa and W. Nazarewicz, Phys.Rev. C69, 054311 (2004) M. Karny et al., Physics Letters B664, 52 (2008) BCS treatment of pairing G.Fiorin, E.Maglione, L.S.Ferreira, Phys.Rev. C67, 054302 (2003) A.T. Kruppa and W. Nazarewicz, Phys. Rev. C69, 054311 (2004) Test case:deformed WS+Coulomb potential for b2=0.244, kmax=2 fm-1, lmax=11, Nscat=60 141Ho Ground-state 2p radioactivity 50_463 1 0 1 -1 1 0 0 Light intensity [a.u.] 6 -1 PMT -1 4 1 = (104 2)°, 1 = (70 3)° 2 = (142 3)º pp = (143 5)º 0 0.534 0.536 Time after implantation [ms] 0.538 Energy - angle 2D correlation 45Fe 16 18 14 16 12 10 14 8.0 12 6.0 10 4.0 8 2.0 0 6 4 2 0.8 -1.0 0.6 -0.5 Q E/ 0.4 0.0 0.5 2p 0.2 c ) pp ( os 1.0 3-body model prediction 25% p2 + 75% f2 Experiment Summary Coupling of nuclear structure and reaction theory • Nuclei are open quantum many body systems. • Tying nuclear structure directly to nuclear decays and reactions within a coherent framework is an important goal. • Ab-initio methods, continuum shell model, and modern mean field theories allow for the consistent treatment of open channels, thus linking the description of bound and unbound nuclear states and direct reactions. • The battleground in this task is the territory of weakly bound nuclei where the structure and reaction aspects are interwoven. Thank You Backup Complex Scaling Introduced in the early 1970s in atomic physics to guarantee that wave functions and resonances are square integrable. Uniform complex scaling The transformed Hamiltonian is no longer hermitian as it acquires a complex potential. However, for a wide class of local and nonlocal potentials, called dilationanalytic potentials, the so-called ABC is valid: •The bound states of h and h are the same; •The positive-energy spectrum of the original Hamiltonian h is rotated down by an angle of 2 into the complex-energy plane; •The resonant states of h with eigenvalues En satisfying the condition |arg(En)|<2 are also eigenvalues h and their wave functions are square integrable. Myo, Kato, Ikeda, PRC C76, 054309 (2007) Theoretical Description of the Fission Process 240Pu N,Z elongation necking split N1,Z1 N=N1+N2 Z=Z1+Z2 N2,Z2 Adiabatic Approaches to Fission WKB: collective inertia (mass parameter) multidimensional space of collective parameters V(q) The action has to be minimized by, e.g., the dynamic programming method. It consists of calculating actions along short segments between adjacent, regularly spaced hyperplanes, perpendicular to the qdirection [A. Baran et al., Nucl. Phys. A361, 83 (1981)] E q Multimodal fission in nuclear DFT A. Staszczak, A.Baran, J. Dobaczewski, W.N. Kinetic Energy and Mass Distributions in HFB+TDGCM(GOA) 238U one-dimensional dynamical Wahl (experiment) • Time-dependent microscopic collective Schroedinger equation • Two collective degrees of freedom • TKE and mass distributions reproduced • Dynamical effects are responsible for the large widths of the mass distributions • No free parameters HFB + Gogny D1S + Time-Dependent GOA H. Goutte, P. Casoli, J.-F. Berger, D. Gogny, Phys. Rev. C71, 024316 (2005)