Download Molecular structure: Diatomic molecules in the rigid rotor and

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Hartree–Fock method wikipedia , lookup

Coherent states wikipedia , lookup

Coupled cluster wikipedia , lookup

Scalar field theory wikipedia , lookup

Symmetry in quantum mechanics wikipedia , lookup

Path integral formulation wikipedia , lookup

Tight binding wikipedia , lookup

Rigid rotor wikipedia , lookup

Relativistic quantum mechanics wikipedia , lookup

Dirac equation wikipedia , lookup

Hydrogen atom wikipedia , lookup

Schrödinger equation wikipedia , lookup

Wave–particle duality wikipedia , lookup

Matter wave wikipedia , lookup

Atomic theory wikipedia , lookup

Wave function wikipedia , lookup

Erwin Schrödinger wikipedia , lookup

Rotational spectroscopy wikipedia , lookup

Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup

Franck–Condon principle wikipedia , lookup

Molecular Hamiltonian wikipedia , lookup

Transcript
Molecular structure: Diatomic molecules in the rigid
rotor and harmonic oscillator approximations
Notes on Quantum Mechanics
http://quantum.bu.edu/notes/QuantumMechanics/MolecularStructureDiatomic.pdf
Last updated Thursday, November 30, 2006 18:02:55-05:00
Copyright © 2003 Dan Dill ([email protected])
Department of Chemistry, Boston University, Boston MA 02215
We have seen how the adiabatic approximation and the Born-Oppenheimer approximation allow us
to get separate Schrödinger equations for the electronic and the nuclear coordinates.
The nuclear Schrödinger equation describes both the motion of the molecule as a whole through
space and relative motion—vibrations and rotations—of the atoms that make up the molecule. The
way to separate the motions through space from the internal motion is to reexpress the coordinates of
each atom with respect to the laboratory in terms of (1) the three coordinates of the center of mass of
the molecule and (2) the coordinates of each atom with respect to the center of mass.
This change of coordinates is illustrated most simply for the example of a diatomic molecule. The
result is that the nuclear wave function factors into the product of (1) the wave function of the
molecule moving freely through space, as a point mass centered at the center of mass of the molecule
and with mass equal to the mass of the molecule, and (2) the wave function of the relative motion of
the atoms with respect to the center of mass.
The Schrödinger equation for the relative motion of the atoms with respect to the center of mass
depends on the details of the structure of the molecule. The simplest example, which we will explore
here, is a diatomic molecule AB.
à Transformation to center of mass and internal coordinates
In this case of a diatomic molecule AB the center of mass is at the point
M A R A + MB R B
Rcm = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
M
between the atoms, where M = MA + MB is the total mass of the molecule, and the relative motion is
described by the R = RA - RB . That is, the six coordinates, consisting of the three coordinates,
RA = HXA , Y A , Z A L, of atom A and the three coordinates, RB = HXB , YB , ZB L, of atom B, are replaced
by the three coordinates, Rcm = HXcm , Ycm , Zcm L, of the center of mass, and the three coordinates,
Rrel = HX , Y , ZL, of the relative motion with respect to the center of mass.
If we assume for simplicity that the molecule is confined in a cubical volume L3 , then the
Schrödinger equation for the center of mass is just the free particle Schrödinger equation. This means
that the wave function for the motion of the molecule through space just the free particle wave
function
ij 2 yz
nx p Xcm
nz p Zcm
i n y p Ycm y
ÅÅÅÅÅÅ zzz sinJ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ N sinjj ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ zz sinJ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ N,
ycm = jjjj$%%%%%%
j L zz
L
L
L
k
{
k
{
3
and its contribution to the total energy is just
2
Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations
h2
Ecm = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ Hnx 2 + n y 2 + nz 2 L.
8M L
The Schrödinger equation for the relative motion about the center of mass is
ÄÅ
ÅÅ Ñ2
ÅÅ- ÅÅÅÅÅÅÅÅÅÅ
ÅÅ 2 m
ÅÇ
ÉÑ
Ñ
∑2
∑2 y
ij ∑2
j ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ + ÅÅÅÅÅÅÅÅÅÅÅÅÅ + ÅÅÅÅÅÅÅÅÅÅÅÅÅ zz + Ei HX , Y , ZLÑÑÑÑ fi HX , Y , ZL = Eint fi HX , Y , ZL,
2
2
2
ÑÑÖ
∑Y
∑Z {
k ∑X
where Eint = , - Ecm in the contribution of the internal motion to the total energy ,, and
M A MB
m = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
M A + MB
is the reduced mass of the molecule. We can actually simplify this Schrödinger equation somewhat
by realizing that for a diatomic molecule the electronic eigenvalue, Ei , changes only when the
separation between the two atoms changes. This means that Ei depends only on the internuclear
distance,
Ei HX , Y , ZL = Ei HRL,
and not at all on the oritentation q, f of the axis in space. Note that now we (re-)use the symbol R to
be
R=
è!!!!!!!!!!!!!!!!
!!!!!!!!!!!
X 2 + Y 2 + Z2 .
This simplification in turn means that we can separate the motion along the internuclear axis—the
stretching and shrinking of R—from the rotation of the molecule about the center of mass by
transforming to spherical polar internal coordinates,
HX , Y , ZLö HR, q, fL.
From our study of rotational motion and the one-electron atom we know that this means we can write
the nuclear wave function as
fi HX , Y , ZL = Sk i HRL YJ M Hq, fL,
in terms of spherical harmonics and a wave function Sk i HRL determined by the vibrational
Schrödinger equation
ÄÅ
ÉÑ
ÅÅ Ñ2 1 „2
ÑÑ
Ñ2 J HJ + 1L
ÅÅ- ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ R + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ÑÑ Sk i HRL = Eint Sk i HRL.
+
E
HRL
ÅÅÅÅÅÅÅÅ
Å
ÅÅÅ
Å
ÅÅÅ
Å
Å
i
ÅÅ 2 m R „ R2
ÑÑ
2
2mR
ÅÇ
ÑÖ
The quantum number k indexes the number of loops in the wave function Sk i HRL and the index i
indicates the parametric dependence of wave function Sk i HRL on the electronic potential curve, Ei HRL.
In a way analogous to what we did in the one-electron atom, we can define a related vibrational wave
function
ck i HRL = R Sk i HRL
to transform the vibrational Schrödinger equation into pure curvature form
ÄÅ
ÉÑ
ÅÅ Ñ2 „2
ÑÑ
Ñ2 J HJ + 1L
ÅÅ- ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ÑÑ ck i HRL = Eint ck i HRL.
ÅÅÅÅÅÅÅÅ
Å
ÅÅÅ
Å
ÅÅÅ
Å
+
E
HRL
i
ÅÅ 2 m „ R2
ÑÑ
2 m R2
ÅÇ
ÑÖ
Copyright © 2003 Dan Dill ([email protected]). All rights reserved
Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations
à The rigid rotor and harmonic oscillator approximations
A simple picture of a nuclear motion in a diatomic molecule is two masses connected by a spring.
The masses can vibrate, stretching and compressing the spring with respect to the equilibrium spring
length (the bond length), The masses can also rotate about the fixed point at the center of mass. The
question arises whether the rotation can affect the vibration, say by stretching the spring. To answer
this question, we can compare the expected frequencies of vibrational motion and rotational motion.
Now, we know that since molecules in an eigenstate do not move, we need to discuss motion in
terms of wave packets. For vibrations, wave packets oscillate with at the harmonic (angular)
è!!!!!!!!!
frequency wvib = k ê m . For rotations, the wave packets rotate with (angular) frequency roughly
corresponding to the frequency
è!!!!!!!!!!!!!!!!!
angular momentum
Ñ J HJ + 1L
Ñ
wrot = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ö ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ÅÅÅÅÅÅ º ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2Å .
2
moment of inertia
m Re
m Re
è = 2358.5685 cm-1 , R = 1.0976968 Þ, and for N-14 the
As example, for N2 ground state, w
e
vib
reduced mass is 7.00153720 amu. These values give wvib = 7.07081 μ 1013 Hz and
wrot = 7.52781 μ 1011 Hz.
Verify these values for wvib and wrot .
The ratio of these values, wvib ê wrot = 93.9291, means that the nitrogen molecule undergoes about
100 vibrations for each full rotation. This means that on average the molecule rotates at the midpoint
of its vibrational excrusion, namely at the internuclear distance Re .
For this reason, it is a very good approximation is to assume that the rotational kinetic energy can be
replaced by its value at the equilibrium internuclear distance, Re .
Ñ2 J HJ + 1L
Ñ2 J HJ + 1L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅÅ ö ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅ .
2mR
2 m Re
This is known as the rigid rotor approximation. In this approximation the vibrational Schrödinger
equation becomes
ÅÄÅ Ñ2 „2
ÑÉÑ
Ñ2 J HJ + 1L y
i
ÅÅ
Ñ
ÅÅ- ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ + Ei HRLÑÑÑ ck i HRL = jjEint - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅ zz ck i HRL.
ÅÅÇ 2 m „ R
ÑÑÖ
k
{
2 m Re
The equilibrium internuclear distance is determined by the balance of attractive electron-nuclear
forces, repulsive nuclear-nuclear forces, and repulsive electron-electron forces. We can simplify
things further by expanding the electronic potential energy in a Taylor series with respect to the
equilibrium separation,
„ Ei HRL
1 i „2 Ei HRL y
HR - Re L + ÅÅÅÅÅ jj ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅ zz
HR - Re L2 + …
Ei HRL = Ei HRe L + J ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ N
2 k „ R {R=Re
„ R R=Re
Since, by definition, Ei HRL is a minimum at R = Re , the second term in the series vanishes since the
slope of Ei HRL is zero at the minimum. If we also ignore the cubic and higher terms in the expansion,
then we can write the electronic potential energy as
1
Ei HRL = Ei HRe L + ÅÅÅÅÅ
2
ij „2 Ei HRL yz
j ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ z
HR - Re L2 .
k „ R2 {R=Re
Copyright © 2003 Dan Dill ([email protected]). All rights reserved
3
4
Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations
This is known as the harmonic oscillator approximation. In this approximation the vibrational
Schrödinger equation simplifies further to
ÄÅ
ÉÑ
ÅÅ Ñ2 „2
1 ij „2 Ei HRL yz
ÑÑ
2Ñ
ÅÅ- ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ + ÅÅÅÅÅ
j
z
HR
R
L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ÅÅÅÅ
Å
ÅÅÅÅ
e Ñ
ÅÅ 2 m „ R2
ÑÑ ck i HRL
2 k „ R2 {R=Re
ÅÇ
ÑÖ
Ñ2 J HJ + 1L y
i
= jjEint - Ei HRe L - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅ zz ck i HRL.
k
2 m Re {
This ‘simplified’ equation looks a little untidy. We can neaten it up in two ways.
First, the internal energy is the sum of contributions from electronic motion, vibrational motion, and
electronic motion,
Eint = Eelec + Evib + Erot .
If we make the identifications
Eelec = Ei HRe L
Ñ2 J HJ + 1L
Erot = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅ ,
2 m Re
this means that the eigenvalue of the simplified vibrational Schrödinger equation is just Evib , since
Ñ2 J HJ + 1L y
i
Eint - jjEi HRe L + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅ zz = HEelec + Evib + Erot L - HEelec + Erot L = Evib .
k
2 m Re {
Second, harmonic potential energy is expressed most naturally as k x 2 ê 2, in terms of a force constant
k (Greek letter kappa) and displacement from equilibrium x (Greek letter xi). We can transform from
the coordinate R to the displacement x = R - Re using „ R = „ Hx + Re L = „ x. The result is the
vibrational Schrödinger equation
1
y
ij Ñ2 „2
j- ÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅ + ÅÅÅÅÅ k x 2 zz ck i HxL = Evib ck i HxL,
2
2
{
k 2 m „x
where the force constant is
i „2 Ei HRL y
.
k = jj ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅ zz
k „ R {R=Re
à Grand summary of diatomic molecule molecular structure
Using the adiabatic and Born-Oppenheimer approximations, we express the molecular wave function
and total energy as
Y, HR, rL º yi HR, rL fi HRL = yi HR, rL ycm HXcm , Ycm , Zcm L fi HX , Y , ZL.
, = Ecm + Eint = Ecm + Eelec + Evib + Erot
The electronic wave function and energy are determined from
H¶ yi HR, rL = Ei HRL yi HR, rL,
Copyright © 2003 Dan Dill ([email protected]). All rights reserved
Molecular structure: Diatomic molecules in the rigid rotor and harmonic oscillator approximations
using the infinite nuclear mass hamiltonian
Ñ2
H¶ = - ÅÅÅÅÅÅÅÅÅÅÅÅ ‚ “e 2 +V HR, rL.
2m e
The hamiltonian assumes the molecular center of mass is infinitely heavy.
The electronic energy, Ei HRL, contributes to the potential energy experienced by the nuclear motion,
as described below.
The motion of the molecule through space, assumed to be bounded by a cubical volume L3 , has
wave function and energy
ji 2 zyz
nx p Xcm
nz p Zcm
i n y p Ycm y
ycm HXcm , Ycm , Zcm L = jjjj$%%%%%%
ÅÅÅÅÅ zzz sinJ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ N sinjj ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ zz sinJ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ N,
j L z
L
L
L
k
{
k
{
3
h2
Ecm = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ Hnx 2 + n y 2 + nz 2 L, nx , n y , nz = 1, 2, 3, …
8M L
Using the rigid rotor and harmonic oscillator approximations, we express the wave function of
internal nuclear motion (with respect to the center of mass) as
ck i HxL
fi HX , Y , ZL = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ YJ M Hq, fL,
x
where the harmonic oscillator wave function is determined from the Schrödinger equation
2
„2
1
y
jij- ÅÅÅÅÑÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅ
ÅÅÅÅ2Å + ÅÅÅÅÅ k x 2 zz ck i HxL = Evib ck i HxL.
2
{
k 2 m „x
The internal energy,
Eint = Eelec + Evib + Erot ,
is the sum of the electronic, vibrational and rotational contributions,
1
k
1
i „ 2 Ei HRL y
, k = 1, 2, 3 …,
ÅÅÅÅÅ Jk - ÅÅÅÅÅ N, k = jj ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅÅ zz
Evib = h ÅÅÅÅÅÅÅÅÅÅ $%%%%%%
2p
m
2
k „ R {R=Re
Eelec = Ei HRe L,
Ñ2 J HJ + 1L
Erot = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅÅÅÅÅÅÅ , J = 0, 1, 2, ….
2 m Re
These equations are a complete, approximate description of the quantum aspects of diatomic
molecules. To test their correctness, the next step is to see how to use them to account for the
structure and spectra of diatomic molecules.
Copyright © 2003 Dan Dill ([email protected]). All rights reserved
5